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ABSTRACT

In this paper, a nonlinear algorithm that maximizes zero-error probability (MZEP) with decision feedback (DF)
is proposed to counteract both of severely distorted multi-path fading effect and impulsive noise. The proposed
MZEP-DF algorithm has shown the immunity to impulsive noise and the ability of the feedback filt;ar section to
cancel the remaining intersymbol interference as well. Compared with the linear MZEP algorithm, it yields above
10 dB enhancement of steady state MSE performance in severely distorted multipath fading channels with
impulse noise where the least mean square (LMS) algorithm does not converge below -3dB of MSE.

I. Introduction instant error power.

Unlike the MSE criterion that utilizes error

Various adaptive equalizer structures and power, the information-theoretic learning (ITL)
coefficient-adjustment  algorithms  have  been method, based on a combination of a nonparametric
developed based on minimum squared error (MSE) probability density function (PDF) estimator and a
criterion in order to cancel intersymbol interference procedure to compute information potential, has
(ISI) induced by multipath phenomena. The least been introduced and well developed™. As a robust
mean square (LMS) algorithm'’ as a typical ITL-type algorithm, the PDF matching algorithm has
algorithm employing the MSE criterion has been been introduced by Jeong et al. and applied
being widely used due to its simplicity in successfully to the classification problem with a real
realization. One drawback of the LMS algorithm is biomedical data set™ and blind equalization for
that its convergence is strongly affected by large multipoint communication systems“] In 3], the
error values since it is based on the minimization of authors proposed to reuse the previously acquired
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training - phase output samples in the test phase so
that the test-phase output PDF follows the
training-phase output PDF. In the research [4], the
authors studied the PDF matching method using
signal power for blind equalization. As a tributary
version of PDF matching method, an algorithm that
maximizes zero-error probability (MZEP) has been
introduced in the process of developing its blind
version'.

In this paper, we study the performance of
supervised MZEP algorithm for multipath fading
channels contaminated with strong impulsive noise,
and propose a nonlinear MZEP algorithm with
decision feedback to counteract both of severely
distorted multi-path fading and impulsive noise as
appeared in underwater channels.

II. LMS Algorithm based on MSE Criterion

In case of FIR linear filter, a tapped delay line
(TDL) with L taps can be used for input vector Xj
= [% X1, X2, = Xezer) and output sample yi =
WTX,, where W; is the weight vector at time k. Let
us define the error ex = di-yi where di is the desired

value or training symbol, then its MSE is derived as
MSE = E[é?] 1

Instead of estimating the expected value of error

power, we can use the instant error power e{i and

apply steepest descent method with step-size or

convergence parameter gys to obtain the weight

update equation’".

de?
Wia =W, =ty ﬁ =W, +2u,s6,X, @)

. Linear MZEP Algorithm based on ITL

In this section we introduce a linear equalizer
algorithm that tries to create a concentration of error
samples near zero by minimizing quadratic distance
QD[fx(e), &e)] between the PDF of error signal fz(e)
and Dirac-delta function of error &e), so that error

PDF forms a sharp spike at zero. Rearranging the

distance, we have

ODLf(e),8(e)] = |(fe(&)-8(£)dE
- [R(&)de + [51 @)z 2[f, O3z

The term [& (&d& can be treated as a constant ¢
since it does not depend on the weights of the

adaptive system. Substituting IP, for [f%(£)d¢ in

(3), where IP, is defined as information potential in

[2], we have
QD[ f(e).6(e)]=1IF, +c-2f,(0) 4)

Minimization of QD[fx(e), Ne)] in (4) induces
minimization of IP, and maximization of fz(0),
simultaneously since they have opposite signs.
Noticing that minimization of I[P, indicates
maximization of error entropy, having etror samples
spread, we see that this is in discord with MEE
criterion that maximizes IP. in [6].

To avoid this conflict, the work [S] proposed to
maximize only the third term fz(0) while omitting
the error information potential IP. from (4) as well
as the constant term. From this process,
maximization of zero-error probability criterion has
been obtained as:

max £, (0) )

By way of Parzen window method with Gaussian
kernel™, the zero-error probability f:(0) becomes

0= 36, (e ©®

i=k-N+1

where G, *) is Gaussian kernel with kernel size o,
and N is the number of error sample points.
For the maximization of the cost function (5), a

gradient ascent method can be employed.

o (0)
Weo =Woi + Hygzp 5—W 7
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With step-size pmzep and the gradient evaluated
from

PO _ 1 ?X..
W N f‘;ﬂ, Goe) ®)

MZEP algorithm can be expressed as

3
W =W+ 228 3o G(e) X, ©

i=k-N+]

IV. MZEP Algorithm with Decision
Feedback

The decision feedback equalizer (DFE) comprises
a feed-forward filter with weight vector W and a

feedback filter with weight vector WZ for producing

corresponding  decisions d , from input x;. The
feed-forward filter is identical to the TDL which is
adopted in LMS in (2) and MZEP algorithm in (9).
The feedback filter receives the sequence of
decisions on previously detected symbols.

The feedback filter is used to remove the part of
ISI from the present estimate which is caused by
previously detected symbolsm. That is, if the values
of the symbols already detected are known and past
decisions are assumed to be correct, then the ISI
contributed by these symbols can be canceled
exactly by subtracting past symbol values with
appropriate weighting from the equalizer output. It is
noticeable that since the output of the feedback filter
section is a weighted sum of noise-free past
decisions, the feedback weights play no part in
determining the noise power at the equalizer output.
The ability of the feedback filter section to cancel
the remaining ISI, because of a number of past
samples, allows more freedom in the choice of the
weights of the forward filter section. One of main
drawback of DFE is that incorrect decisions can
cause etror propagation. Fortunately it is not
catastrophic and AWGN related errors in common
communication channels degrade performance only
slightly. In multipath fading channels contaminated
with strong impulsive noise, large errors make
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weight adjustment unstable and error propagation is
not negligible. So decision feedback equalizers
require robust DFE algorithms immune to impulsive
noise.

The output of DFE with P weights in
feed-forward filter section and @ weights in
feedback filter section can be expressed as

P g-! A
Vi = WX, + D Wh, dieger (10)
p=0 4=0

where d, is an estimate of the desired value at time
k.
Elements of feed-forward weight vector W are

{wfp up Wl oy
ward weight vector W7 are{ufy, wpy uly, . uf o, ).

The elements {&k,l,zik,z,...,;ik,qﬁ} of vector

wf »_,} and elements of feed-back-

Dy, are previously detected symbols. In an
adaptive mode, the filter weights are adjusted
recursively in order to maximize zero-error
probability according to the gradient descent method.
f=0)

af (0
W =W+ thep o ";‘[:,7(?')‘ 1an
Q)
"/ni = Wo!d + Hazer or ;:;5) (12)
The gradients are evaluated from
FO_ 1+ ¥,
WE ZN AZM o) Fy 13)
e G.(e) X,
o N, E\L/
Ofb (O]} 1 x é‘y
wE ZN,;M Cole) Gpw
(14)

] & -
== Zei'Ga(ef)'Di-f
N i

where N> P and N = Q.
Now MZEP algorithm for DFE (MZEP-DF) can
be summarized as
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&
W}cil = W:f + /UMZEZP =0 Z e, -G, (e) X, (15)
o'N S

&
W =w? HMyzepor . G(e) N
=W+ 2N d;\f{ e) D, (16)

In the expression of weight elements, we have

&
£ Magerepr
Wi, 5 Wy, + 5 5__——-2 Ze, Gole) x,., an
FEY N |
B s H : y
— MZEP-DF
Wiy, = we, +EMEEDE N G (e)) - diiy (18)
o'N Za

Though it is not proved theoretically in this paper
that the MZEP-DF results in a mathematically
tractable optimization of the equalizer weights, we
apply the MZEP criterion to decision feedback
equalization through simulation for performance and
investigate possibilities or capabilities of the
proposed algorithm.

V. Results and Discussion

In this section we present and discuss simulation
results that illustrate the comparative performance of
the proposed MZEP-DF algorithm versus LMS and
ILMS-DF in the environment of multipath channel
with impulsive noise. Both cases are studied for the
chanmel models in [7]. The transfer functions of
each channel models are

H,(z)=0.304+0.903z7" +0.304z (19)

H,(2)=0.407+0.81527 + 40727 20)

These channel models are typical multipath
channel models and result in severe inter-symbol
interference. Especially the channel model Ha(z)
poses worst spectral nulls in spectral characteristics.
Then the channel output signal is added with a
zero-mean white impulsive noise  generated

according to the following noise PDF expression.

2

7 (1) = 1—&—-ex [——nzl +—-—f— =exp[ —1 (21
J NOISE o I/’i-' p 2 2 ﬂzﬂ p 2 ( )

a3
V27 o 20,

where £=0.03, o =0.001, and o) =50.001. The
value o° indicates the variance of background
AWGN and o - o° is the variance of impulse noise
only. This noise model is widely used as an
impulsive noise model™™,

The number of weights in the linear algorithms is
set to 11. For DFE algorithms, the numbers of
feed-forward and feedback filter weights ate P =7
and Q =4, respectively. As measures of equalizer
performance, we use MSE convergence, probability
densities for errors.

The 4 PAM random symbol {-3, -1, 1, 3} is
transmitted to the channel. The step-sizes which
control convergence speed are all wzer =puzeeor -
0.04, and gyus = tamsor = 0.0002 for both channel
models. All these step-sizes and kernel sizes were
selected to have the lowest minimum MSE values.
We use a common data-block size N =20 and the
kernel size o=0.7.

We see the MSE convergence performance,
error-PDF for Hi(z) in Fig. 1 and 2, respectively.
The MSE performance in Fig. 1 shows that in
impulsive noise environments LMS algorithm does
not reach acceptable steady state MSE regardless of
DFE. The MZEP and MZEP-DF, however, show
very raid convergence and also reach about -23 dB
and 25 dB of steady state MSE, respectively.
Considering that the variance of impulse noise is 50
and that of AWGN is 0.001, the two algorithms
proves to have powerful immunity to impulsive

noise.
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Fig. 1. MSE convergence performance for Hi(z)



&4 88 8] 11-08 Vol.36 No.8

0.0200

00175 }

0.0150

ity

£ 00125

0.0100

0.0075

Probability dens

0.0050 ~

0.0026 -

0.0000
-0.4 -0.2 0.0 0.2 04

Error values

Fig. 2. Probability density for errors in H(2)

From the error PDF estimates in Fig. 2, we see
their performance difference more apparently. The
error distribution of MZEP-DF is shown to be the
most concentrated around zero. It may be viewed
that the performance difference between MZEP with
DF and MZEP without DF is slight. However, in the
severer channel model, Hx(z) with impulsive noise,
we can observe more prominently the performance
improvement caused by employing DF for the
compensation of residual ISI in Fig. 3. LMS and
LMS-DF show severe performance degradation
remaining above -3dB of steady state MSE, and
linear MZEP stays around -5 dB. On the other hand,
the steady-state MSE performance of MZEP-DF
reaches around - 15 dB. The proposed strategy of
employing DF in MZEP algorithm yields above 10
dB of performance enhancement. Fig. 4 depicts error

probability performance of algorithms for  H,(2)
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30 H T T T H
0 2000 4000 6000 8000 10000

Iterations (symbols)

Fig. 3. MSE convergence performance for Ha(z)
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Fig. 4. Probability density for errors for Ha(z).

and their performance differences are shown more
clearly. The error values of LMS, LMS-DF, and
even linear MZEP appear not to be gathered around
zero, but MZEP-DF produces error distribution still
concentrated around zero.

VI. Conclusion

In this paper, a nonlinear MZEP algorithm with
decision feedback is proposed to counteract both of
severely distorted multi-path fading effect and strong
impulsive noise.

The conventional MSE-based algorithms like
LMS-type algorithms produce enhanced ISI-
cancelling performance when equipped with DF, but
have no ability to cope with impulsive noise and the
incorrect decisions of the algorithms induced by
impulsive noise can cause severe error propagation.
So DFE algorithms immune to impulsive noise are
in great demand. The proposed MZEP-DF algorithm
has shown the immunity to impulsive noise and the
ability of the feedback filter section to cancel the
remaining ISI as well. It yields above 10 dB
enhancement of steady state MSE performance in
severely distorted multipath fading channels with
impulse noise when compared to the linear MZEP
algorithm. It may be concluded that the proposed
MZEP-DF can be a successful candidate for
supervised equalization in impulsive noise and

severe channel fading environments.
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