DOI QR코드

DOI QR Code

Microbial and Physicochemical Properties of Liquid Egg during Cold Storage

액란의 냉장저장 중 미생물 및 이화학적 성상

  • Kang, Geun-Ho (National Institute of Animal Science, Rural Development Administration) ;
  • Cho, Soo-Hyun (National Institute of Animal Science, Rural Development Administration) ;
  • Seong, Pil-Nam (National Institute of Animal Science, Rural Development Administration) ;
  • Park, Beom-Young (National Institute of Animal Science, Rural Development Administration) ;
  • Ham, Jun-Sang (National Institute of Animal Science, Rural Development Administration) ;
  • Jeong, Seok-Geun (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Dong-Hun (National Institute of Animal Science, Rural Development Administration) ;
  • Chae, Hyun-Seok (National Institute of Animal Science, Rural Development Administration)
  • 강근호 (농촌진흥청 국립축산과학원) ;
  • 조수현 (농촌진흥청 국립축산과학원) ;
  • 성필남 (농촌진흥청 국립축산과학원) ;
  • 박범영 (농촌진흥청 국립축산과학원) ;
  • 함준상 (농촌진흥청 국립축산과학원) ;
  • 정석근 (농촌진흥청 국립축산과학원) ;
  • 김동훈 (농촌진흥청 국립축산과학원) ;
  • 채현석 (농촌진흥청 국립축산과학원)
  • Received : 2011.01.10
  • Accepted : 2011.07.14
  • Published : 2011.08.31

Abstract

The study was performed to investigate microbial and physicochemical properties of domestic liquid eggs during cold storage. The liquid eggs used in the experiment were whole liquid, liquid egg yolks, and liquid egg whites. All samples were analyzed in summer and winter. The aerobic microorganisms were 1,270-83,300 CFU/g from non-sterilized liquid eggs produced in summer and their numbers increased from those produced in winter (ND, ~4,330 CFU/g). Total coliforms were not observed in non-sterilized whole liquid and non-sterilized liquid egg yolk regardless of season. Total coliforms from nonsterilized products were not detected in liquid egg whites during cold storage. Salmonella sp. was not observed in any of the liquid egg products. However, Pseudomonas sp., Pseudomonas geezennei, Pseudomonas otitidis, and Pseudomonas aeruginosa were identified by 16S rRNA from non-sterilized whole liquid eggs produced in summer. The pH and viscosity of whole liquid eggs and liquid egg whites were not different between the sterilized and non-sterilized treatments during cold storage. These results suggest that managing cross-contamination is necessary when non-sterilized liquid eggs are processed in summer.

본 연구는 국내에서 유통되고 있는 액란의 냉장저장 중 미생물 및 이화학적 성상을 구명하기 위해 수행하였다. 본 실험에 사용된 액란은 살균 및 비살균 처리된 전란액, 난황액 및 난백액으로 여름철과 겨울철 생산 제품에 대해 각각 조사하였다. 냉장저장 중 세균수의 경우 여름철에 생산된 비살균 액란(전란액, 난황액 및 난백액)은 1,270-83,300 CFU/g 수준으로 겨울철에 생산된 비살균 액란의 0-4,330 CFU/g 에 비해 증가하는 것으로 나타났다. 살균 전란액과 살균 난황액에서는 저장기간 동안 액란생산 계절과 관계 없이 대장균군이 검출되지 않는 것으로 나타났다. 반면, 비살균 액란은 냉장저장 중 겨울철에 생산된 난백액에서만 대장균군이 검출되지 않는 것으로 나타났다. Salmonella는 살균 및 비살균 액란 모두에서 냉장저장 중 액란 생산 계절과 관계없이 검출되지 않았다. 그러나, 여름철에 생산된 비살균 전란액으로부터 Salmonella 의심균을 동정한 결과, Pseudomonas sp, Pseudomonas geezenne, Pseudomonas otitidis, Pseudomonas aeruginosa인 것으로 판명되었다. 액란의 냉장저장 중 pH 및 점도변화는 살균과 비살균 처리구간 뚜렷한 차이가 없는 것으로 나타났다. 이상의 결과를 종합해 볼 때 여름철에 비살균 액란 생산시 교차오염에 각별한 주의가 필요할 것으로 사료된다.

Keywords

References

  1. Agricultural Marketing Service (2001) Grading of Shell Eggs. US Government Printing Office, Washington, DC, pp. 47-68.
  2. Alderton, G., Ward, W. H., and Fevold, H. L. (1945) Isolation of lysozyme from egg white. J. Biol. Chem. 157, 43-58.
  3. CDC (Centers for Disease Control and Prevention) (2000) Summary of Salmonella serotype Enteritidis outbreaks reported to the CDC in 1999. Available from: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/files/SECSTE99web.pdf. Accessed Aug. 26, 2011.
  4. CDC (Centers for Disease Control and Prevention) (2002) Summary of notifiable diseases. 2000. Morb. Mortal. Wkly. Rep. 49, 1.
  5. Cotterilla, O. J. and Funk, E. M. (1963) Effect of pH and lipase treatment on yolk-contaminated egg white. Food Technol. 17, 1183-1188.
  6. Fraenkel-Conrat, H. and Olcott, H. S. (1945) Esterification of proteins with alcohols of low molecular weight. J. Biol. Chem. 161, 259-268.
  7. Favier, G. I., Escudero, M. E., and Guzmán, A. M. S. (2007) Thermal inactivation of Yersinia enterocolitica in liquid egg products. J. Food Saf. 28, 157-169.
  8. Li-Chan, E. and Nakai, S. (1989) Biochemical basis for the properties of egg white. CRC Crit. Rev. Poul. Biol. 2, 21-58.
  9. Loffler, F. E., Sun, Q., Li, J., and Tiedje, J. (2000) 16S rRNA gene-base detection of tetrachoroethene-dechlorinating desulfuromonase and dehaloccoides species. Appl. Environ. Microbiol. 66, 1369-1374. https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  10. Lyczak, J. B., Cannon, C. L., and Pier, G. B. (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microb. Infect. 2, 1051-1060. https://doi.org/10.1016/S1286-4579(00)01259-4
  11. Malamud, D. and Drysdale, J. W. (1978) Isoelectric points of proteins: a table. Anal. Biochem. 86, 620-647. https://doi.org/10.1016/0003-2697(78)90790-X
  12. Phillip, L. G., Yang, S. T., Schulman, W., and Kinsella, J. E. (1989) Effect of lysozyme, clupeine, and sucrose on the foaming properties of whey protein isolate and $\beta$-lactoglobulin. J. Food Sci. 54, 743-747. https://doi.org/10.1111/j.1365-2621.1989.tb04694.x
  13. Poole, S. (1989) The foaming enhancing properties of basic biopolymers. Int. J. Food Sci. Technol. 24, 121-137.
  14. Poole, S., West, S. I., and Fry, J. C. (1986) Lipid-tolerant protein foaming systems. Food Hydrocolloids 1, 45-55. https://doi.org/10.1016/S0268-005X(86)80006-6
  15. Poole, S., West, S. I., and Walters, C. L. (1984) Protein-protein interactions: their importance in the foaming of heterogeneous protein systems. J. Sci. Food Agri. 35, 701-711. https://doi.org/10.1002/jsfa.2740350618
  16. SAS (2008) SAT/STAT Software for PC. Release 9.2, SAS Institute Inc., Cary, NC, USA.
  17. Standelman, W. J. and Cotterill, O. J. (1995) Egg science and technology. 4th ed, The Haworth Press Inc., Bilnghamton, NY.
  18. Wang, G. and Wang, T. (2009) Effects of yolk contamination, shearing, and heating on foaming properties of fresh egg white. J. Food Sci. 74, 147-156.
  19. Wang, G. and Wang, T. (2009) Improving foaming properties of yolk-contaminated egg albumen by basic soy protein. J. Food Sci. 74, 581-587. https://doi.org/10.1111/j.1750-3841.2009.01306.x
  20. 국립수의과학검역원 (2009) 축산물의 가공기준 및 성분 규격 , 고시 제 2008-27호.
  21. 국립수의과학검역원 (2010) 축산물의 가공기준 및 성분 규격, 고시 제2010-2호.
  22. 농림수산식품부 (2010) 농림수산식품 주요통계. p. 501.

Cited by

  1. Comparison of Quality Characteristics and Antioxidative Activities of Cookies Containing Blueberry Powder and Different Types of Egg Yolk vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.999
  2. Microbiological Quality and Growth and Survival of Foodborne Pathogens in Ready-To-Eat Egg Products vol.30, pp.2, 2015, https://doi.org/10.13103/JFHS.2015.30.2.178
  3. Comparative Study of Change in Salmonella Enteritidis and Salmonella Typhimurium Populations in Egg white and Yolk vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.342
  4. A Study of Establishment and Exploitation of Bio-markers for Determination of Shelf-life of Eggs and Egg Products vol.32, pp.3, 2012, https://doi.org/10.5851/kosfa.2012.32.3.354
  5. 국내 비살균 전란액, 난백액, 난황액의 유통기한 평가 vol.34, pp.1, 2011, https://doi.org/10.13103/jfhs.2019.34.1.94
  6. Predictive Modeling for the Growth of Salmonella spp. in Liquid Egg White and Application of Scenario-Based Risk Estimation vol.9, pp.3, 2011, https://doi.org/10.3390/microorganisms9030486
  7. Influence of the Initial Cell Number on the Growth Fitness of Salmonella Enteritidis in Raw and Pasteurized Liquid Whole Egg, Egg White, and Egg Yolk vol.10, pp.7, 2011, https://doi.org/10.3390/foods10071621