DOI QR코드

DOI QR Code

Gill Ultrastructure of the Spiny Top Shell, Batillus cornutus (Gastropoda: Turbinidae)

소라, Batillus cornutus 아가미의 미세구조

  • Jung, Gui-Kwon (Jeollanamdo Gangjin Office of Education) ;
  • Park, Jung-Jun (Pathology Division, Aquaculture Research Institute, NFRDI) ;
  • Ju, Sun-Mi (Department of Aqualife Medicine, Chonnam National University) ;
  • Jeon, Mi-Ae (Department of Aqualife Medicine, Chonnam National University) ;
  • Lee, Jung-Sick (Department of Aqualife Medicine, Chonnam National University)
  • 정귀권 (전라남도 강진교육지원청) ;
  • 박정준 (국립수산과학원 병리연구과) ;
  • 주선미 (전남대학교 수산생명의학과) ;
  • 전미애 (전남대학교 수산생명의학과) ;
  • 이정식 (전남대학교 수산생명의학과)
  • Received : 2011.02.03
  • Accepted : 2011.03.09
  • Published : 2011.03.31

Abstract

Gill morphology and ultrastructure of the spiny top shell, Batillus cornutus were described using light and electron microscopy (SEM and TEM). The spiny top shell, Batillus cornutus has bipectinate gill. The epithelial layer of gill filament was simple and composed of columnar epithelium, ciliated cell, mitochondria-rich cell and secretory cell. Microvilli were well-developed on the free surface of columnar epithelial cell. The epithelial cells are connected to the neighboring cells with intercelluar junctions at the apico-lateral surface. The cilia and microvilli were commonly observed on the free surface of ciliated cell. Tubular mitochondria appeared in the apical cytoplasm, and connected ciliary rootlet. Mitochondria-rich cells contained a oval-shaped nucleus in the basal area. And majority of cytoplasm was occupied by well-developed mitochondria. Result of AB-PAS (pH 2.5) and AF-AB reaction showed that secretory cells contained mainly acidic carboxylated mucosubstances. Secretory cells are unicellular glands and can be divided into four types (A, B, C and D) depending on the cell shape and ultrastructure of secretory granules.

광학 및 전자현미경을 이용하여 소라 아가미의 형태와 미세구조를 기재하였다. 소라의 아가미는 bipectinate형이다. 새엽 상피층은 단층으로 상피세포, 섬모세포, mitochondria-rich cell 그리고 분비세포로 구성되어 있었다. 상피세포들은 원주형이며, 자유면에는 미세융모들이 발달되어 있었고 인접한 세포들과는 상부측면에 세포연접들로 연결되어 있었다. 섬모세포들은 자유면에 섬모와 미세융모들을 가지며, 세포질에는 잘 발달된 미토콘드리아들이 무리지어 존재하고 섬모의 기저 뿌리 끝이 연결되어 있었다. Mitochondria-rich cell은 기저부에 원형의 핵을 가지며, 세포질의 대부분은 발달된 미토콘드리아들이 차지하고 있었다. AB-PAS와 AF-AB 반응 결과, 분비 세포들은 주로 산성점액을 함유하고 있었다. 분비세포는 단세포선으로 세포의 형태와 분비과립의 미세구조적 특징에 따라 4 종류 (A, B, C, D)로 구분할 수 있었다.

Keywords

References

  1. Aksit, D. and Mutaf, B.F. (2007) Gill histology of Patella Linneaus, 1758 (Mollusca: Gastropoda). Rapp. Comm. Int. Mer. Medit., 38: 1-413.
  2. Atkins, D. (1937) On the ciliary mechanisms and interrelationships of lamellibranchs. Part III. Types of lamellibranch gills and their food currents. Q. J. Microsc. Sci., 79: 375-421.
  3. Beninger, P.G. and Dufour, S.C. (1996) Mucocyte distribution and relationship to particle transport on the pseudolamellibranch gill of Crassostrea virginica (Bivalvia: Ostreidae). Mar. Ecol. Prog. Ser., 137: 133-138. https://doi.org/10.3354/meps137133
  4. Beninger, P.G., St-Jean, S., Poussart, Y. and Ward, J.E. (1993) Gill function and mucocyte distribution in Placopecten magellanicus and Mytilus edulis (Mollusca: Bivalvia): the role of mucus in particle transport. Mar. Ecol. Prog. Ser., 98: 275-282. https://doi.org/10.3354/meps098275
  5. Bubel, A. (1989) Cilia (Flagella). In; Microstructure and function of cells: Electron micrographs of cell ultrastructure. pp. 99-128. Ellis Horwood Limited, New York.
  6. Cannuel, R., Beninger, P.G., McCombie, H. and Boudry, P. (2009) Gill development and its functional and evolutionary implications in the blue mussel Mytilus edulis (Bivalvia: Mytilidae). Biol. Bull., 217: 173-188. https://doi.org/10.1086/BBLv217n2p173
  7. Dufour, S.C. and Beninger, P.G. (2001) A functional interpretation of cilia and mucocyte distributions on the abfrontal surface of bivalve gills. Mar. Biol., 138: 295-309. https://doi.org/10.1007/s002270000466
  8. Eertman, R.H.M. (1996) Comparative study on gill morphology of gastropods from Moreton Bay, Queensland. Moll. Res., 17: 3-20. https://doi.org/10.1080/13235818.1996.10673671
  9. Gomez-Mendikute, A., Elizondo, M., Venier, P. and Cajaraville, M.P. (2005) Characterization of mussel gill cells in vivo and in vitro. Cell Tissue Res., 321: 131-140. https://doi.org/10.1007/s00441-005-1093-9
  10. Hagiwara, H., Ohwada, N. and Takata, K. (2004) Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int'l. Rev. Cytolo., 234: 101-141. https://doi.org/10.1016/S0074-7696(04)34003-9
  11. Kaneko, T., Shiraishi, K., Katoh, F., Hasegawa, S. and Hiroi, J. (2002) Chloride cells during early life stages of fish and their functional differentiation. Fish. Sci. 68, 1-9. https://doi.org/10.1046/j.1444-2906.2002.00382.x
  12. Kurosumi, K., Shibasaki, S. and Ito, T. (1984) Cytology of the secretion in mammalian sweat gland. Int'l. Rev. Cytolo., 87: 253-329. https://doi.org/10.1016/S0074-7696(08)62445-6
  13. Lundin, K. and Schander, C. (1999) Ultrastructure of gill cilia and ciliary rootlets of Chaetoderma nitidulum Loven 1844 (Mollusca, Chaetodermomorpha). Acta Zool., 80: 185-191. https://doi.org/10.1046/j.1463-6395.1999.00014.x
  14. Lutfy, R.G. and Demian, E.S. (1965) The histology of the respiratory organs of Marisa cornuarietis (L.). Arkiv. Fur. Zool., 18: 51-71.
  15. Ma, K.H. and Lee, J.S. (2003) Gill ultrastructure of the granular ark, Tegillarca granosa (Bivalvia: Acridae). Korean J. Electron Microscopy, 33: 223-231. [in Korean]
  16. Moore, H.J. (1971) The structure of the latero-frontal cirri on the gills of certain lamellibranch molluscs and their role in suspension feeding. Mar. Biol., 11: 23-27. https://doi.org/10.1007/BF00348017
  17. Morton, B.S. (1983) The biology and functional morphology of the wasted ark Trisidos semitorta (Bivalvia: Arcacea) with a discussion on shell "torsion" in the genus. Malacologia, 23: 375-396.
  18. Nuwayhid, M.A., Davies, P.S. and Elder, H.Y. (1978) Gill structure in the common limpet Patella vulgata. J. Mar. Biol. Assoc. U.K., 58: 817-823. https://doi.org/10.1017/S0025315400056782
  19. Owen, G. (1974) Studies on the gill of Mytilus edulis: the eu-latero-frontal cirri. Proc. R. Soc. London Ser. B., 187: 83-91. https://doi.org/10.1098/rspb.1974.0062
  20. Ragg, N.L.C. and Taylor, H.H. (2006) Oxygen uptake, diffusion limitation, and diffusing capacity of the bipectinate gills of the abalone, Haliotis iris (Mollusca: Prosobranchia). Comp. Biochem. Physiol., A, 143: 299-306. https://doi.org/10.1016/j.cbpa.2005.12.004
  21. Starobogatov, Y.I. (1992) Morphological basis for phylogeny and classification of Bivalvia. Ruthenica, 2: 1-25.
  22. Villers, C.J.D.E. and Hodgson, A.N. (1987) The structure of the secondary gills of Siphonaria capensis (Gastropoda: Pulmonata). J. Mollus. Stud., 53: 129-138. https://doi.org/10.1093/mollus/53.2.129
  23. Voltzow, J. (1994) Gastropoda: Prosobranchia. In; Microscopic anatomy of invertebrates Vol. 5. Mollusca I. (ed. by Harrison F.W. and Kohn A.J.). pp. 111-252. Wiley-Liss, Inc., New York.
  24. Wanichanon, C. (2004) Histology of hypobranchial gland and gill of Haliotis asinina Linnaeus. J. Shellfish Res., 23: 1107-1112.
  25. Yoo, J.S. (1988) Korean shells in color. pp. 1-196. Iljisa Publ. Co, Seoul. [in Korean]
  26. Zardus, J.D. (2002) Protobranch bivalves. Adv. Mar. Biol., 42: 1-65. https://doi.org/10.1016/S0065-2881(02)42012-3

Cited by

  1. Microanatomy of gill of the abalone, Haliotis discus hannai (Ino, 1953) (Gastropoda: Haliotidae) vol.30, pp.1, 2014, https://doi.org/10.9710/kjm.2014.30.1.51
  2. Microscopic Anatomy of the Gill and Lung of the Apple Snail Pomacea maculata, with Notes on the Volume of the Lung vol.39, pp.1, 2020, https://doi.org/10.2983/035.039.0112