DOI QR코드

DOI QR Code

Physiological Characterization of an AtPGR from Arabidopsis Involved in Pathogen Resistance

애기장대 AtPGR 단백질의 병 저항성에 관한 생리적 특성 분석

  • Chung, Moon-Soo (Department of Plant Biotechnology, Chonnam National University) ;
  • Kim, Cheol-Soo (Department of Plant Biotechnology, Chonnam National University)
  • 정문수 (전남대학교 농업생명과학대학 식물생명공학부) ;
  • 김철수 (전남대학교 농업생명과학대학 식물생명공학부)
  • Received : 2011.07.20
  • Accepted : 2011.08.30
  • Published : 2011.09.30

Abstract

The AtPGR gene is induced by pathogen infection, jasmonic acid and salicylic acid treatment and may therefore play a role in plant defense responses. Arabidopsis thaliana Plasma membrane Glucose-responsive Regulator (AtPGR) was previously isolated from Arabidopsis, which confers glucose insensitivity on plants. To study its biological functions directly, we have characterized both loss-of-function RNAi mutant and gain-of-function transgenic overexpression plants for AtPGR in Arabidopsis. The AtPGR-overexpressing plants displayed enhanced resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae as measured by a significant decrease in both bacterial growth and symptom development as compared to those in wild-type and RNAi plants. The enhanced resistance in the gain-of-function transgenic plants was associated with increased induction of SA-regulated PDF1.2 and JA-regulated PR1 by the bacterial pathogen. Thus, pathogen-induced AtPGR plays a positive role in defense responses to P. syringae.

식물체에서 당 조절 인자의 병 저항성 생리적 특성을 살펴보길 위하여, 원형질막에 존재하는 glucose 조절인자인 애기장대 AtPGR 유전자의 과발현 및 RNAi 형질전환체를 사용하였다[3]. AtPGR 유전자는 병원균 처리에 의하여 전사 발현양이 증가하였을 뿐만 아니라, JA와 SA 처리 시에도 AtPGR 전사 발현양이 증가함을 확인하였다. 과발현 형질전환체를 이용하여 병 저항성을 살펴본 결과, AtPGR 유전자는 병원균에 대해 저항성을 유도함을 알수 있었다. 또한 병원균 유도 증가 유전자로 알려진 PDF1.2 및 PR1 유전자 발현 양상을 qPCR을 통해 살펴본 결과, AtPGR 유전자는 PDF1.2 유전자를 SA 경로 하에서는 증가시키는 반면, JA 경로 하에서는 발현 증가량을 감소시키는 경향이 있음을 나타내었고, PR1 유전자의 발현은 JA 경로를 통해 조절할 것으로 생각되어진다. 이러한 결과를 바탕으로, AtPGR 유전자는 glucose 뿐만 아니라 병원균 반응에도 관련되어져 있음을 알 수 있다.

Keywords

References

  1. Bourque, S., R. Lemoine, A. Sequeira-Legrand, U. Fayolle, S. Delrot, and A. Pugin. 2002. The elicitor cryptogein blocks glucose transport in tobacco cells. Plant Physiol. 130, 2177-2187. https://doi.org/10.1104/pp.009449
  2. Buttner, M. and N. Sauer. 2000. Monosaccharide transporters in plants: structure, function and physiology. Bba-Biomembranes. 1465, 263-274. https://doi.org/10.1016/S0005-2736(00)00143-7
  3. Chung, M. S., P. Huang, C. M. Ha, J. H. Jun, S. J. Ahn, F. C. Zhang, H. J. Bae, B. H. Cho, and C. S. Kim. 2011. Molecular identification and physiological characterization of a putative novel plasma membrane protein from Arabidopsis involved in Glucose response. J. Plant Biol. 54, 57-64. https://doi.org/10.1007/s12374-011-9145-z
  4. Clark, J. I. M. and J. L. Hall. 1998. Solute transport into healthy and powdery mildew-infected leaves of pea and uptake by powdery mildew mycelium. New Phytol. 140, 261-269. https://doi.org/10.1046/j.1469-8137.1998.00263.x
  5. Dangl, J. L. and J. D. G. Jones. 2001. Plant pathogens and integrated defence responses to infection. Nature 411, 826-833. https://doi.org/10.1038/35081161
  6. Fan, L. M., W. Zhang, J. G. Chen, J. P. Taylor, A. M. Jones, and S. M. Assmann. 2008. Abscisic acid regulation of guard-cell K+ and anion channels in G beta- and RGS-deficient Arabidopsis lines. Proc. Natl. Acad. Sci. USA 105, 8476-8481. https://doi.org/10.1073/pnas.0800980105
  7. Ferrari, S., J. M. Plotnikova, G. De Lorenzo, and F. M. Ausubel. 2003. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J. 35, 193-205. https://doi.org/10.1046/j.1365-313X.2003.01794.x
  8. Feys, B. J. and J. E. Parker. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449-455. https://doi.org/10.1016/S0168-9525(00)02107-7
  9. Gao, Y., S. Wang, T. Asami, and J. G. Chen. 2008. Loss-of-function mutations in the Arabidopsis heterotrimeric G-protein alpha subunit enhance the developmental defects of brassinosteroid signaling and biosynthesis mutants. Plant Cell Physiol. 49, 1013-1024. https://doi.org/10.1093/pcp/pcn078
  10. Grigston, J. C., D. Osuna, W. R. Scheible, C. Liu, M. Stitt, and A. M. Jones. 2008. D-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Letters. 582, 3577-3584. https://doi.org/10.1016/j.febslet.2008.08.038
  11. Hall, J. L. and L. E. Williams. 2000. Assimilate transport and partitioning in fungal biotrophic interactions. Aust. J. Plant Physiol. 27, 549-560.2
  12. Herbers, K., Y. Takahata, M. Melzer, H. P. Mock, M. Hajirezaei, and U. Sonnewald. 2000. Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol. Plant Pathol. 1, 51-59. https://doi.org/10.1046/j.1364-3703.2000.00007.x
  13. Huang, J., J. P. Taylor, J. G. Chen, J. F. Uhrig, D. J. Schnell, T. Nakagawa, K. L. Korth, and A. M. Jones. 2006. The plastid protein thylakoid formation1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18, 1226-1238. https://doi.org/10.1105/tpc.105.037259
  14. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of hycocyanin and fluorescin. J. Lab. Clin. Med. 44, 301-307.
  15. Kunkel, B. N. and D. M. Brooks. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325-331. https://doi.org/10.1016/S1369-5266(02)00275-3
  16. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  17. Loake, G. and M. Grant. 2007. Salicylic acid in plant defence-the players and protagonists. Curr. Opin. Plant Biol. 10, 466-472. https://doi.org/10.1016/j.pbi.2007.08.008
  18. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  19. Nandi, A., W. Moeder, P. Kachroo, D. F. Klessig, and J. Shah. 2005. Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Mol. Plant Microbe Interact 18, 363-370. https://doi.org/10.1094/MPMI-18-0363
  20. Penninckx, I. A. M. A., B. P. H. J. Thomma, A. Buchala, J. P. Metraux, and W. F. Broekaert. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113. https://doi.org/10.1105/tpc.10.12.2103
  21. Rolland, F., E. Baena-Gonzalez, and J. Sheen. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675-709. https://doi.org/10.1146/annurev.arplant.57.032905.105441
  22. Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner, and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell 8, 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  23. Sauer, N. and R. Stadler. 1993. A sink-specific H+/monosaccharide co-transporter from Nicotiana tabacum: cloning and heterologous expression in baker's yeast. Plant J. 4, 601-610. https://doi.org/10.1046/j.1365-313X.1993.04040601.x
  24. Shapiro, A. D. and C. Zhang. 2001. The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol. 127, 1089-1101. https://doi.org/10.1104/pp.010096
  25. Truernit, E., J. Schmid, P. Epple, J. Illig, and N. Sauer. 1996. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell 8, 2169-2182. https://doi.org/10.1105/tpc.8.12.2169
  26. Wang, S., S. M. Assmann, and N. V. Fedoroff. 2008. Characterization of the Arabidopsis heterotrimeric G protein. J. Biol. Chem. 283, 13913-13922. https://doi.org/10.1074/jbc.M801376200