DOI QR코드

DOI QR Code

MCF-7 유방암 세포에서 mTOR-COX-2 신호경로를 통한 resveratrol의 apoptosis 효과

Apoptotic Effects of Resveratrol via mTOR and COX-2 Signal Pathways in MCF-7 Breast Cancer Cells

  • 이솔화 (한남대학교 생명나노과학대학 생명과학과) ;
  • 이혜연 (한남대학교 생명나노과학대학 생명과학과) ;
  • 박송이 (한남대학교 생명나노과학대학 생명과학과) ;
  • 박옥진 (한남대학교 생명나노과학대학 식품영양학과) ;
  • 김영민 (한남대학교 생명나노과학대학 생명과학과)
  • Lee, Sol-Hwa (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Lee, Hye-Yeon (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Park, Song-Yi (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Park, Ock-Jin (Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University) ;
  • Kim, Young-Min (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University)
  • 투고 : 2011.07.21
  • 심사 : 2011.08.22
  • 발행 : 2011.09.30

초록

식물에서 추출한 파이토케미컬은 암세포의 여러 신호전달 기작에 관여함으로써 apoptosis를 유도한다. 본 연구에서는 파이토케미컬의 한 종류인 레스베라트롤을 MCF-7 세포에 처리함으로써 암세포의 증식 억제와 apoptosis 유도 효과를 알아보았고, 이러한 효과가 암세포의 성장과 증식에 관여하는 단백질인 mTOR와 COX-2의 발현 양상에 어떠한 영향을 미치는지 알아보고자 하였다. 그 결과 MCF-7 세포에 레스베라트롤을 처리했을 때 농도가 증가함에 따라 암세포의 생존률이 감소하였고, Hoechst 33342를 이용한 chromatin 염색과 Annexin V-propodium iodide staning을 통하여 암세포의 세포증식 효과가 apoptosis에 의해 유도된 것임을 알 수 있었다. MCF-7 세포에 레스베라트롤을 처리했을 때 mTOR 및 COX-2의 발현 양상을 확인하기 위해 Western blotting을 실시한 결과, 레스베라트롤의 농도가 높아짐에 따라 mTOR 및 COX-2의 발현이 감소함을 확인 하였다. 이와 같은 결과는 MCF-7 유방암 세포에서 레스베라트롤에 의한 암세포의 증식 억제 및 apoptosis 유도가 mTOR 신호경로 저해를 통한 COX-2의 발현을 감소시킴으로써 나타나는 것으로 보인다.

Resveratrol, a kind of phytochemical, is presented in grape skins. Resveratorl exerts antiproliferative, anti-cancer and pro-apoptotic activities in cancer cells. Mammalian target of rapamycin (mTOR) is a critical regulator of cellular growth and proliferation, and it is known to be a strategic target for anti-cancer therapeutic uses. mTOR is a major downstream of the PI3K/Akt pathway, which is activated in various cancer cells. It also plays an important role in the survival, proliferation and angiogenesis of cells. Cyclooxygenase-2 (COX-2) is an important protein that mediates inflammatory processes. It plays an important role in various tumors by affecting cell proliferation, mitosis, apoptosis and angiogenesis. In this study, we have investigated the effects of resveratrol on apoptosis through mTOR and COX-2 expression in MCF-7 breast cancer cells. The treatment of resveratrol with different concentrations inhibited proliferation of MCF-7. The data showed that resveratrol induced apoptotic cell death of cancer cells and decreased mTOR and COX-2 expression. These results suggest that resveratrol induces apoptosis of MCF-7 breast cancer cells by inhibiting mTOR and COX-2 expression.

키워드

참고문헌

  1. Aziz, M. H., M. Nihal, V. X. Fu, D. F. Jarrard, and N. Ahmad. 2006. Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3'-kinase/Akt pathway and Bcl-2 family proteins. Mol. Cancer Ther. 5, 1335-1341. https://doi.org/10.1158/1535-7163.MCT-05-0526
  2. Brown, E. J., M. W. Albers, T. B. Shin, K. Ichikawa, C. T. Keith, W. S. Lane, and S. L. Schreiber. 1994. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756-758. https://doi.org/10.1038/369756a0
  3. Chen, T. and Y. S. Wong. 2008. Selenocystine induces S-phase arrest and apoptosis in human breast adenocarcinoma MCF-7 cells by modulating ERK and Akt phosphorylation. J. Agric. Food Chem. 56, 10574-10581. https://doi.org/10.1021/jf802125t
  4. Guertin, D. A. and D. M. Sabatini. 2005. An expanding role for mTOR in cancer. Trends Mol. Med. 11, 353-361. https://doi.org/10.1016/j.molmed.2005.06.007
  5. Howe, L. R., K. Subbaramaiah, A. M. Brown, and A. J. Dannenberg. 2001. Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocr Relat Cancer. 8, 97-114. https://doi.org/10.1677/erc.0.0080097
  6. Huang, S., M. A. Bjornsti, and P. J. Houghton. 2003. Rapamycins: mechanism of action and cellular resistance. Cancer Biol. Ther. 2, 222-232. https://doi.org/10.4161/cbt.2.3.360
  7. Hwang, J. T., J. Ha, I. J. Park, S. K. Lee, H. W. Baik, Y. M. Kim, and O. J. Park. 2006. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett. 248, 115-121.
  8. Kim, M. H., S. S. Seo, Y. S. Song, D. H. Kang, I. A. Park, S. B. Kang, and H. P. Lee. 2003. Expression of cyclooxygenase- 1 and -2 associated with expression of VEGF in primary cervical cancer and at metastatic lymph nodes. Gynecol. Oncol. 90, 83-90 https://doi.org/10.1016/S0090-8258(03)00224-5
  9. Lee, Y. K., S. Y. Park, Y. M. Kim, and O. J. Park. 2009. Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Ann. N Y Acad. Sci. 1171, 489-494. https://doi.org/10.1111/j.1749-6632.2009.04699.x
  10. Lee, Y. K., S. Y. Park, Y. M. Kim, D. C. Kim, W. S. Lee, Y. J. Surh, and O. J. Park. 2010. Suppression of mTOR via Akt-dependent and -independent mechanisms in selenium-treated colon cancer cells: involvement of AMPKalpha1. Carcinogenesis 31, 1092-1099. https://doi.org/10.1093/carcin/bgq040
  11. Li, W., H. R. Jiang, X. L. Xu, J. Wang, J. Zhang, M. L. Liu, and L. Y. Zhai. 2010. Cyclin d1 expression and the inhibitory effect of celecoxib on ovarian tumor growth in vivo. Int. J. Mol. Sci. 11, 3999-4013. https://doi.org/10.3390/ijms11103999
  12. Liu, R. H. Potential synergy of phytochemicals in cancer prevention: mechanism of action. 2004. J. Nutr. 134, 3479S-3485S.
  13. Liu, X. H., A. Kirschenbaum, S. Yao, M. E. Stearns, J. F. Holland, K. Claffey, and A. C. Levine. 1999. Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line. Clin. Exp. Metastasis 17, 687-694. https://doi.org/10.1023/A:1006728119549
  14. Marrogi, A. J., W. D. Travis, J. A. Welsh, M. A. Khan, H. Rahim, H. Tazelaar, P. Pairolero, V. Trastek, J. Jett, N. E. Caporaso, L. A. Liotta, and C. C. Harris. 2000. Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin. Cancer Res. 6, 4739-3744.
  15. Meric-Bernstam, F. and A. M. Gonzalez-Angulo. 2009. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27, 2278-2287. https://doi.org/10.1200/JCO.2008.20.0766
  16. Sexton, E., C. Van Themsche, K. LeBlanc, S. Parent, P. Lemoine, and E. Asselin. 2006. Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells. Mol. Cancer 17:45, doi: 10.1186/1476-4598-5-45.
  17. Stylianou, K., I. Petrakis, V. Mavroeidi, S. Stratakis, E. Vardaki, K. Perakis, S. Stratigis, A. Passam, E. Papadogiorgaki, K. Giannakakis, L. Nakopoulou, and E. Daphnis. 2011. The PI3K/Akt/mTOR pathway is activated in murine lupus nephritis and downregulated by rapamycin. Nephrol. Dial. Transplant 26, 498-508. https://doi.org/10.1093/ndt/gfq496
  18. Vanamala, J., L. Reddivari, S. Radhakrishnan, and C. Tarver. 2010. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 10, 238. https://doi.org/10.1186/1471-2407-10-238
  19. Wang, T. T., N. W. Schoene, Y. S. Kim, C. S. Mizuno, and A. M. Rimando. 2010. Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. Mol. Nutr. Food Res. 54, 335-344. https://doi.org/10.1002/mnfr.200900143
  20. Yoeli-Lerner, M., G. K. Yiu, I. Rabinovitz, P. Erhardt, S. Jauliac, and A. Toker. 2005. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell 20, 539-550. https://doi.org/10.1016/j.molcel.2005.10.033
  21. Zhang, J., J. Cao, Q. Weng, R. Wu, Y. Yan, H. Jing, H. Zhu, Q. He, and B. Yang. 2010. Suppression of hypoxia-inducible factor $1{\alpha}$ (HIF-1$\alpha$) by tirapazamine is dependent on eIF2$\alpha$ phosphorylation rather than the mTORC1/4E-BP1 pathway. PLoS One. 5, 11. 13910. https://doi.org/10.1371/journal.pone.0013910