References
- Bakhtiari, M. R., M. G. Faezi, M. Fallahpour, A. Noohi, N. Moazami, and Z. Amidi. 2006. Medium optimization by orthogonal array designs for urease production by Aspegillus niger PTCC5011. Process Biochem. 41, 547-551. https://doi.org/10.1016/j.procbio.2005.09.002
- Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2004. Ethanol from ligoncelulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39, 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
- Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
- Cui, J. D. 2010. Optimization of medium for phenylalanine ammonia lyase production in E. coli using response surface method. Kor. J. Chem. Eng. 27, 174-178. https://doi.org/10.1007/s11814-009-0234-3
- Gao, W., Y. J. Kim, C. H. Chung, and J. W. Lee. 2010. Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method. Biotechnol. Bioprocess Eng. 15, 837-845. https://doi.org/10.1007/s12257-010-0042-y
- Gao, W., C. H. Chung, J. Li, and J. W. Lee. 2011. Application of statistical experimental design for optimization of physiological factors and their influences on production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method. Korean J. Chem. Eng. Doi:10.1007/s11814-011-0107-4.
- Golias H, G. J. Dumsday, G. A. Stanley, and N. B. Pamment. 2000. Characteristics of cellulase preparation affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett. 26, 617-621.
- Gu, X. B., Z. M. Zheng, H. Q. Yu, J. Wang, F. L. Liang, and R. L. Liu. 2005. Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biocehm. 40, 3196-3201. https://doi.org/10.1016/j.procbio.2005.02.011
- Hongwen, C., F. Baishan, and H. Zongding. 2005. Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production from Klebsiella pneumoniae. Biochem. Eng. J. 25, 47-53. https://doi.org/10.1016/j.bej.2005.03.011
- Jaleel, C. A., P. Manivannan, G. M. A. Lakshmanan, R. Sridharan, and R. Panneerselvam. 2007. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Compt. Rend. Biol. 330, 806-813. https://doi.org/10.1016/j.crvi.2007.08.009
- Jin, I. H., D. Y. Jing, C. W. Son, S. K. Kim, W. Gao., C. H. Chung, and J. W. Lee. 2011. Enhanced production of heteropolysaccharide- 7 by Beijerinkia indica HS-2001 in repeated batch culture with optimized substitution of culture medium. Biotechnol. Bioprocess Eng. 16, 45-255.
- Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
- Khuri, A. I. and J. A. Cornell. 1987. Response surfaces: Design and analysis. Marcel Dekker, New York, USA.
- Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009 Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym. Microb. Technol. 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
- Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym. Microb. Technol. 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
- Lee, N. K., Y. B. Jo, I. H. Jin, C. W. Son, and J. W. Lee. 2009. The effect of potassium phosphate as a pH stabilizer on the production of gellan by Sphingmonas paucibilis NK-2000. J. Life Sci. 19, 1033-1038. https://doi.org/10.5352/JLS.2009.19.8.1033
- Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresource Technol. 99, 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
- Sen, R. 1997. Response surface optimization of the critical media components for the production of surfactin. J. Chem. Tech. Biotechnol. 68, 263-270. https://doi.org/10.1002/(SICI)1097-4660(199703)68:3<263::AID-JCTB631>3.0.CO;2-8
- Senthikumar, S. R., A. Ashokkumar, K. C. Raj, and P. Cunasekraran. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresource Technol. 96, 1380-1386. https://doi.org/10.1016/j.biortech.2004.11.005
- Seo, H. P., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16, 374-380.
- Shaligram, N. S., S. K. Singh, R. S. Singhal, G. Szakacs, and A. Pandey. 2008. Compactin production in solid-state fermentation using orthogonal array method by Penicillium brevicompactum. Biochem. Eng. J. 41, 295-300. https://doi.org/10.1016/j.bej.2008.05.011
- Shokri, D. and G. Emitiazi. 2010. Indol-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguch design. Curr. Microbiol. 61, 217-225. https://doi.org/10.1007/s00284-010-9600-y
- Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008
- Takashima, S., H. Iikura, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi. 1998. Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J. Biotechnol. 65, 163-171. https://doi.org/10.1016/S0168-1656(98)00084-4
- Tomas-Pejo, E., M. Carcia-Aparicio, M. J. Negr, J. M. Oliva, and M. Ballesteros. 2009. Effect of different cellulase dosage on cell viability and ethanol production by Kluyveromeces marxianus in SSF process. Bioresource Technol. 100, 890-895. https://doi.org/10.1016/j.biortech.2008.07.012
- Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, Chung CH, and J. W. Lee. 2009. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834. https://doi.org/10.1007/s12257-009-0029-8
- Xu, C. P., S. W. Kim, H. J. Hwang, J. W. Choi, and J. W. Yun. 2003. Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuips C240. Process Biochem. 38, 1025-1030. https://doi.org/10.1016/S0032-9592(02)00224-8
-
Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and
$\beta$ -glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65, 553-559.
Cited by
- Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221 vol.99, pp.9, 2015, https://doi.org/10.1007/s00253-014-6186-5
- Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.542
- Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6
- Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1
- Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor vol.21, pp.5, 2016, https://doi.org/10.1007/s12257-016-0468-y
- Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1295
- Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3