The Role of Intracellular Signaling Pathways in the Neurobiology of the Depressive Disorder

우울장애의 신경생물학적 기전으로서 세포 내 신호전달계의 역할

  • Kim, Se-Hyun (Department of Neuropsychiatry, Seoul National University Hospital)
  • 김세현 (서울대학교병원 신경정신과)
  • Received : 2011.09.10
  • Accepted : 2011.11.04
  • Published : 2011.11.30

Abstract

Major depressive disorder is characterized by cellular and molecular alterations resulting in the depressive behavioral phenotypes. Preclinical and clinical studies have demonstrated the deficits, including cell atrophy and loss, in limbic and cortical regions of patients with depression, which is restored with antidepressants by reestablishing proper molecular changes. These findings have implicated the involvement of relevant intracellular signaling pathways in the pathogenetic and therapeutic mechanisms of depressive disorders. This review summarizes the current knowledge of the signal transduction mechanisms related to depressive disorders, including cyclic-AMP, mitogen-activated protein kinase, Akt, and protein translation initiation signaling cascades. Understanding molecular components of signaling pathways regulating neurobiology of depressive disorders may provide the novel targets for the development of more efficacious treatment modalities.

Keywords

References

  1. Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004;3:136-151. https://doi.org/10.1038/nrd1303
  2. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 2010;67:793-802. https://doi.org/10.1001/archgenpsychiatry.2010.90
  3. DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, et al. Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 2010;71:1605-1611. https://doi.org/10.4088/JCP.09m05327blu
  4. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959-964. https://doi.org/10.1126/science.1190287
  5. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011;475:91-95. doi: 10.1038/nature10130.
  6. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59:1116-1127. https://doi.org/10.1016/j.biopsych.2006.02.013
  7. Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001;35:5-49.
  8. Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001;7:541-547. https://doi.org/10.1038/87865
  9. Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry 2003;160:1516-1518. https://doi.org/10.1176/appi.ajp.160.8.1516
  10. Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 2003;54:693-702. https://doi.org/10.1016/S0006-3223(03)00634-6
  11. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001;98: 12796-12801. https://doi.org/10.1073/pnas.211427898
  12. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000;47:1043-1049. https://doi.org/10.1016/S0006-3223(00)00228-6
  13. Manev H, Uz T, Smalheiser NR, Manev R. Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 2001;411:67-70. https://doi.org/10.1016/S0014-2999(00)00904-3
  14. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805-809. https://doi.org/10.1126/science.1083328
  15. Schmidt HD, Banasr M, Duman RS. Future Antidepressant Targets: Neurotrophic Factors and Related Signaling Cascades. Drug Discov Today Ther Strateg 2008;5:151-156. https://doi.org/10.1016/j.ddstr.2008.10.003
  16. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009;62:479- 493. https://doi.org/10.1016/j.neuron.2009.04.017
  17. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 2009;14:764-773, 739. https://doi.org/10.1038/mp.2008.119
  18. Adayev T, Ranasinghe B, Banerjee P. Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Biosci Rep 2005;25:363-385. https://doi.org/10.1007/s10540-005-2896-3
  19. Zheng M, Zhu W, Han Q, Xiao RP. Emerging concepts and therapeutic implications of beta-adrenergic receptor subtype signaling. Pharmacol Ther 2005;108:257-268. https://doi.org/10.1016/j.pharmthera.2005.04.006
  20. Aantaa R, Marjamaki A, Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes. Ann Med 1995;27:439-449.
  21. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006;362:623-639. https://doi.org/10.1016/j.jmb.2006.07.045
  22. Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet 1998;352:1754-1755. https://doi.org/10.1016/S0140-6736(05)79827-5
  23. Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT. G Protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death. J Neurochem 1999;73:1121-1126.
  24. Cowburn RF, Marcusson JO, Eriksson A, Wiehager B, O'Neill C. Adenylyl cyclase activity and G-protein subunit levels in postmortem frontal cortex of suicide victims. Brain Res 1994;633:297-304. https://doi.org/10.1016/0006-8993(94)91552-0
  25. Manier DH, Eiring A, Shelton RC, Sulser F. Beta-adrenoceptorlinked protein kinase A (PKA) activity in human fibroblasts from normal subjects and from patients with major depression. Neuropsychopharmacology 1996;15:555-561. https://doi.org/10.1016/S0893-133X(96)00099-1
  26. Manier DH, Shelton RC, Ellis TC, Peterson CS, Eiring A, Sulser F. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord 2000;61:51-58. https://doi.org/10.1016/S0165-0327(99)00190-1
  27. Perez J, Tinelli D, Brunello N, Racagni G. cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol 1989;172:305-316. https://doi.org/10.1016/0922-4106(89)90060-6
  28. Nestler EJ, Terwilliger RZ, Duman RS. Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem 1989;53:1644- 1647. https://doi.org/10.1111/j.1471-4159.1989.tb08564.x
  29. Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996;16:2365-2372.
  30. Fujimaki K, Morinobu S, Duman RS. Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 2000; 22:42-51. https://doi.org/10.1016/S0893-133X(99)00084-6
  31. Jeon SH, Seong YS, Juhnn YS, Kang UG, Ha KS, Kim YS, et al. Electroconvulsive shock increases the phosphorylation of cyclic AMP response element binding protein at Ser-133 in rat hippocampus but not in cerebellum. Neuropharmacology 1997;36:411-414. https://doi.org/10.1016/S0028-3908(97)00047-6
  32. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000;20:4030- 4036.
  33. Deogracias R, Espliguero G, Iglesias T, Rodriguez-Pena A. Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 2004;26:470-480. https://doi.org/10.1016/j.mcn.2004.03.007
  34. Fukuchi M, Tabuchi A, Tsuda M. Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. J Pharmacol Sci 2005;98:212-218. https://doi.org/10.1254/jphs.FMJ05001X4
  35. McCauslin CS, Heath V, Colangelo AM, Malik R, Lee S, Mallei A, et al. CAAT/enhancer-binding protein delta and cAMP-response element- binding protein mediate inducible expression of the nerve growth factor gene in the central nervous system. J Biol Chem 2006;281: 17681-17688. https://doi.org/10.1074/jbc.M600207200
  36. Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry 2001;49: 753-762. https://doi.org/10.1016/S0006-3223(00)01114-8
  37. Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N, et al. Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressantlike effect. J Neurosci 2002;22:10883-10890.
  38. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element- binding protein expression in nucleus accumbens. J Neurosci 2001;21:7397-7403.
  39. Tanis KQ, Duman RS, Newton SS. CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. Biol Psychiatry 2008;63:710-720. https://doi.org/10.1016/j.biopsych.2007.08.003
  40. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002;298: 1911-1912. https://doi.org/10.1126/science.1072682
  41. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004;14:311-317. https://doi.org/10.1016/j.conb.2004.04.001
  42. Wu GY, Deisseroth K, Tsien RW. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat Neurosci 2001;4:151-158. https://doi.org/10.1038/83976
  43. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68:320-344. https://doi.org/10.1128/MMBR.68.2.320-344.2004
  44. Dwivedi Y, Rizavi HS, Conley RR, Pandey GN. ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 2006;11:86-98. https://doi.org/10.1038/sj.mp.4001744
  45. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 2001;77:916-928. https://doi.org/10.1046/j.1471-4159.2001.00300.x
  46. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 2005;136:29-37. https://doi.org/10.1016/j.molbrainres.2004.12.020
  47. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F, et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004;24:207-216.
  48. Kodama M, Russell DS, Duman RS. Electroconvulsive seizures increase the expression of MAP kinase phosphatases in limbic regions of rat brain. Neuropsychopharmacology 2005;30:360-371. https://doi.org/10.1038/sj.npp.1300588
  49. Bhat RV, Engber TM, Finn JP, Koury EJ, Contreras PC, Miller MS, et al. Region-specific targets of p42/p44MAPK signaling in rat brain. J Neurochem 1998;70:558-571.
  50. Kang UG, Koo YJ, Jeon WJ, Park DB, Juhnn YS, Park JB, et al. Activation of extracellular signal-regulated kinase signaling by chronic electroconvulsive shock in the rat frontal cortex. Psychiatry Res 2006; 145:75-78. https://doi.org/10.1016/j.psychres.2006.05.020
  51. Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, et al. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 2008; 63:353-359. https://doi.org/10.1016/j.biopsych.2007.07.016
  52. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007;61:661-670. https://doi.org/10.1016/j.biopsych.2006.05.047
  53. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003;23:7311-7316.
  54. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003;60:804-515. https://doi.org/10.1001/archpsyc.60.8.804
  55. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002;109:143-148. https://doi.org/10.1016/S0165-1781(02)00005-7
  56. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003;54:70-75. https://doi.org/10.1016/S0006-3223(03)00181-1
  57. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A 2004;101:15506-15511. https://doi.org/10.1073/pnas.0406788101
  58. Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 1997;28:103-110. https://doi.org/10.1016/S0168-0102(97)00030-8
  59. Heine VM, Zareno J, Maslam S, Joëls M, Lucassen PJ. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 2005; 21:1304-1314. https://doi.org/10.1111/j.1460-9568.2005.03951.x
  60. Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005;255:381- 386. https://doi.org/10.1007/s00406-005-0578-6
  61. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001;50:260-265. https://doi.org/10.1016/S0006-3223(01)01083-6
  62. Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:261-265. https://doi.org/10.1016/j.pnpbp.2004.11.009
  63. Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G, et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology 2005;51:234-238. https://doi.org/10.1159/000085725
  64. Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant- like effects in cellular and behavioral models. Neuropsychopharmacology 2010;35:2378-2391. https://doi.org/10.1038/npp.2010.114
  65. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brainderived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22:3251-3261.
  66. Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci 2006;31:268-275. https://doi.org/10.1016/j.tibs.2006.03.009
  67. Jeon SH, Yoo BH, Kang UK, Ahn YM, Bae CD, Park JB, et al. MKP- 1 induced in rat brain after electroconvulsive shock is independent of regulation of 42- and 44-kDa MAPK activity. Biochem Biophys Res Commun 1998;249:692-696. https://doi.org/10.1006/bbrc.1998.9144
  68. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med 2010;16:1328-1332. https://doi.org/10.1038/nm.2219
  69. Fayard E, Tintignac LA, Baudry A, Hemmings BA. Protein kinase B/Akt at a glance. J Cell Sci 2005;118:5675-5678. https://doi.org/10.1242/jcs.02724
  70. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122:261-273. https://doi.org/10.1016/j.cell.2005.05.012
  71. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 2004;101:5099-5104. https://doi.org/10.1073/pnas.0307921101
  72. Kang UG, Roh MS, Jung JR, Shin SY, Lee YH, Park JB, et al. Activation of protein kinase B (Akt) signaling after electroconvulsive shock in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:41-44. https://doi.org/10.1016/S0278-5846(03)00173-8
  73. Krishnan V, Han MH, Mazei-Robison M, Iniguez SD, Ables JL, Vialou V, et al. AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol Psychiatry 2008;64:691-700. https://doi.org/10.1016/j.biopsych.2008.06.003
  74. Polter A, Yang S, Zmijewska AA, van Groen T, Paik JH, Depinho RA, et al. Forkhead box, class O transcription factors in brain: regulation and behavioral manifestation. Biol Psychiatry 2009;65:150-159. https://doi.org/10.1016/j.biopsych.2008.08.005
  75. Yu HS, Kim SH, Park HG, Kim YS, Ahn YM. Activation of Akt signaling in rat brain by intracerebroventricular injection of ouabain: a rat model for mania. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:888-894. https://doi.org/10.1016/j.pnpbp.2010.04.010
  76. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001;65:391-426. https://doi.org/10.1016/S0301-0082(01)00011-9
  77. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 1996;93:8455-8459. https://doi.org/10.1073/pnas.93.16.8455
  78. Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996;6:1664-1668. https://doi.org/10.1016/S0960-9822(02)70790-2
  79. Roh MS, Eom TY, Zmijewska AA, De Sarno P, Roth KA, Jope RS. Hypoxia activates glycogen synthase kinase-3 in mouse brain in vivo: protection by mood stabilizers and imipramine. Biol Psychiatry 2005;57:278-286. https://doi.org/10.1016/j.biopsych.2004.10.039
  80. Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 2004;29:1426-1431. https://doi.org/10.1038/sj.npp.1300439
  81. Madsen TM, Newton SS, Eaton ME, Russell DS, Duman RS. Chronic electroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus: role in adult neurogenesis. Biol Psychiatry 2003;54: 1006-1014. https://doi.org/10.1016/S0006-3223(03)00700-5
  82. Roh MS, Kang UG, Shin SY, Lee YH, Jung HY, Juhnn YS, et al. Biphasic changes in the Ser-9 phosphorylation of glycogen synthase kinase-3beta after electroconvulsive shock in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:1-5. https://doi.org/10.1016/S0278-5846(02)00307-X
  83. Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, et al. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 2010;68:521-527. https://doi.org/10.1016/j.biopsych.2010.04.023
  84. Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H. Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 2004;55:781-784. https://doi.org/10.1016/j.biopsych.2004.01.008
  85. Gould TD, Einat H, Bhat R, Manji HK. AR-A014418, a selective GSK- 3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol 2004;7:387-390. https://doi.org/10.1017/S1461145704004535
  86. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. https://doi.org/10.1016/j.neuron.2008.10.055
  87. Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007;403: 217-234. https://doi.org/10.1042/BJ20070024
  88. Lehman JA, Gomez-Cambronero J. Molecular crosstalk between p70S6k and MAPK cell signaling pathways. Biochem Biophys Res Commun 2002;293:463-469. https://doi.org/10.1016/S0006-291X(02)00238-3
  89. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007;282:14056-14064. https://doi.org/10.1074/jbc.M700906200
  90. Farber NB. The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci 2003;1003:119-130. https://doi.org/10.1196/annals.1300.008
  91. Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res 2005;1050:190-198. https://doi.org/10.1016/j.brainres.2005.05.049
  92. Papp M, Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 1994;263:1-7. https://doi.org/10.1016/0014-2999(94)90516-9
  93. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate Nmethyl- D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011;69:754-761. https://doi.org/10.1016/j.biopsych.2010.12.015
  94. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, et al. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1774-1779. https://doi.org/10.1016/j.pnpbp.2011.05.010