DOI QR코드

DOI QR Code

Sonochemical Synthesis of Cu3(BTC)2 in a Deep Eutectic Mixture of Choline Chloride/dimethylurea

  • Kim, Sun-Hee (Department of Chemical Engineering, Inha University) ;
  • Yang, Seung-Tae (Department of Chemical Engineering, Inha University) ;
  • Kim, Jun (Department of Chemical Engineering, Inha University) ;
  • Ahn, Wha-Seung (Department of Chemical Engineering, Inha University)
  • Received : 2011.04.25
  • Accepted : 2011.06.14
  • Published : 2011.08.20

Abstract

Keywords

References

  1. Ferey, G. Chem. Soc. Rev. 2008, 37, 191. https://doi.org/10.1039/b618320b
  2. Britt, D.; Furukawa, H.; Wang, D.; Glover, T. G.; Yaghi, O. M. PNAS 2009, 106, 20637. https://doi.org/10.1073/pnas.0909718106
  3. Kitaura, R.; Fujimoto, K.; Noro, S.; Kondo, M.; Kitagawa, S. Angew. Chem. Int. Ed. 2002, 41, 133. https://doi.org/10.1002/1521-3773(20020104)41:1<133::AID-ANIE133>3.0.CO;2-R
  4. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. https://doi.org/10.1038/nature01650
  5. Wang, Q. M.; Shen, D.; Bulow, M.; Lau, M. L.; Deng, S.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Micropor. Mesopor. Mater. 2002, 55, 217. https://doi.org/10.1016/S1387-1811(02)00405-5
  6. Alaerts, L.; Seguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; DeVos, D. E. Chem.-Eur. J. 2006, 12, 7353. https://doi.org/10.1002/chem.200600220
  7. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040. https://doi.org/10.1126/science.1116275
  8. Liu, L.; Wei, H.; Zhang, L.; Li, J.; Dong, J. Stud. Surf. Sci. Catal.2008, 174, 459. https://doi.org/10.1016/S0167-2991(08)80240-6
  9. Himeur, F.; Stein, I.; Wragg, D. S.; Slawin, A. M. Z.; Lightfoot, P.; Morris, R. E. Solid State Sci. 2010, 12, 418. https://doi.org/10.1016/j.solidstatesciences.2009.05.023
  10. Liao, J. H.; Wu, P. C.; Bai, Y. H. Inorg. Chem. Commun. 2005, 8, 390. https://doi.org/10.1016/j.inoche.2005.01.025
  11. Zhang, J.; Wu, T.; Chen, S.; Feng, P.; Bu, X. Angew. Chem. Int. Ed. 2009, 48, 3486. https://doi.org/10.1002/anie.200900134
  12. Parnham, E. R.; Drylie, E. A.; Wheatley, P. S.; Slawin, A. M. Z.; Morris, R. E. Angew. Chem. 2006, 118, 5084. https://doi.org/10.1002/ange.200600290
  13. Liao, J. H.; Wu, P. C.; Huang, W. C. Cryst. Growth Des. 2006, 6, 1062. https://doi.org/10.1021/cg0504197
  14. Xu, L.; Choi, E. Y.; Kwon, Y. U. Inorg. Chem. Commun. 2008, 11, 1190. https://doi.org/10.1016/j.inoche.2008.07.001
  15. Chen, S.; Zhang, J.; Wu, T.; Feng, P.; Bu, X. Dalton Trans. 2010, 39, 697. https://doi.org/10.1039/b920318b
  16. Lin, Z.; Slawin, A. M. Z.; Morris, R. E. J. Am. Chem. Soc. 2007, 129, 4880. https://doi.org/10.1021/ja070671y
  17. Kuang, D.; Brezesinski, T.; Smarsly, B. J. Am. Chem. Soc. 2004, 126, 10534. https://doi.org/10.1021/ja0470618
  18. Parnham, E. R.; Drylie, E. A.; Wheatley, P. S.; Slawin, A. M. Z.; Morris, R. E. Angew. Chem. Int. Ed. 2006, 45, 4962. https://doi.org/10.1002/anie.200600290
  19. Parnham, E. R.; Morris, R. E. Acc. Chem. Res. 2007, 40, 1005. https://doi.org/10.1021/ar700025k
  20. Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Chem. Commun. 2008, 6336.
  21. Jung, D. W.; Yang, D. A.; Kim, J.; Kim, J.; Ahn, W. S. Doltan Trans. 2010, 39, 2883. https://doi.org/10.1039/b925088c
  22. Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun. 2008, 3642.
  23. Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Chem.-Eur. J. 2010, 16, 1046. https://doi.org/10.1002/chem.200902382
  24. Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M. W. Nature 1991, 353, 414. https://doi.org/10.1038/353414a0
  25. Suslick, K. S. Science 1990, 247, 1439. https://doi.org/10.1126/science.247.4949.1439
  26. Flannigan, D. J.; Hopkins, S. D.; Suslick, K. S. J. Organomet. Chem. 2005, 690, 3513. https://doi.org/10.1016/j.jorganchem.2005.04.024
  27. Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen. A. G.; Williams, I. D. Science 1999, 283, 1148. https://doi.org/10.1126/science.283.5405.1148
  28. Mason, T. J.; Lorimer, J. P. In Applied Sonochemistry; Wiley- VCH Verlag GmbH Press: Weinheim, Germany, 2002; p 77.
  29. Lickiss, P. D. In The New Chemistry; University of Cambridge Press: UK, 2000; p 76.
  30. Li, Z. Q.; Qiu, L. G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z. Y.; Jiang, X. Mater. Lett. 2009, 63, 78. https://doi.org/10.1016/j.matlet.2008.09.010
  31. Cao, G. In Nanostructures & Nanomaterials; Imperial College Press: UK, 2004; p 56.

Cited by

  1. Synthesis and Adsorption/Catalytic Properties of the Metal Organic Framework CuBTC vol.16, pp.2, 2012, https://doi.org/10.1007/s10563-012-9135-2
  2. Synthesis of metal-organic frameworks: A mini review vol.30, pp.9, 2013, https://doi.org/10.1007/s11814-013-0140-6
  3. Bench-scale preparation of Cu3(BTC)2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications vol.161, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2012.05.021
  4. Ultrasound and deep eutectic solvent (DES): A novel blend of techniques for rapid and energy efficient synthesis of oxazoles vol.20, pp.1, 2013, https://doi.org/10.1016/j.ultsonch.2012.06.003
  5. Capacitive humidity sensing using a metal-organic framework nanoporous thin film fabricated through electrochemical in situ growth vol.30, pp.4, 2011, https://doi.org/10.1007/s10854-018-00652-8
  6. Metal Organic Frameworks (MOFs) and ultrasound: A review vol.52, pp.None, 2011, https://doi.org/10.1016/j.ultsonch.2018.11.004
  7. Preparation of functionalised UiO‐66 metal-organic frameworks (MOFs) nanoparticles using deep eutectic solvents as a benign medium vol.15, pp.15, 2011, https://doi.org/10.1049/mnl.2020.0360
  8. Deep eutectic solvents for the preparation and post-synthetic modification of metal- and covalent organic frameworks vol.23, pp.29, 2021, https://doi.org/10.1039/d1ce00714a
  9. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications vol.281, pp.None, 2011, https://doi.org/10.1016/j.chemosphere.2021.130717