DOI QR코드

DOI QR Code

The Modified Electrode by PEDOP with MWCNTs-Palladium Nanoparticles for the Determination of hydroquinone and Catechol

  • Naranchimeg, Orogzodmaa (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Seul-Ki (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeon, Seung-Won (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2011.04.15
  • Accepted : 2011.07.08
  • Published : 2011.08.20

Abstract

Poly-ethylenedioxypyrrole (PEDOP) coated thiolated multiwall carbon nanotubes palladium nanoparticles (MWCNTs-Pd) modified glassy carbon electrode (GCE) [PEDOP/MWCNTs-Pd/GCE] for the determination of hydroquinone (HQ) and it’s isomer catechol (CA) were synthesized and compared with bare GCE and thiolated multiwall carbon nanotubes (MWCNTs-SH/GCE). The modification could be made by simple processes on a GCE with MWCNTs-Pd covered by PEDOP in a 0.05 M tetrabutylammonium perchlorate (TBAP)/MeCN solution system. A well-defined peak potential evaluation of the oxidation of hydroquinone to quinone at 0.05 V (vs. Ag/AgCl), and electrochemical reduction back to hydroquinone were found by cyclic voltammetry (CV) in phosphate buffered saline (PBS) at pH 7.4. Peak current values increased linearly with increasing hydroquinone contents. The peak separation between the anodic and cathodic peaks at the PEDOP/MWCNTs-Pd/GCE was ${\Delta}Ep$ = 40 mV for HQ and ${\Delta}Ep$ = 70 mV for CA, resulting in a higher electron transfer rate. Moreover, good reproducibility, excellent storage stability, a wide linear range (0.1 ${\mu}M$ - 5 mM for HQ and 0.01 ${\mu}M$ - 6 mM for CA), and low detection limits ($2.9{\times}10^{-8}$ M for HQ and $2.6{\times}10^{-8}$ M for CA; S/N = 3) were determined using differential pulse voltammetry (DPV) and amperometric responses; this makes it a promising candidate as a sensor for determination of HQ and CA.

Keywords

References

  1. Briganti, S.; Camera, E.; Picardo, M. Pigment Cell Res. 2003, 16, 101. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  2. Vieira, I. C.; Fatibello-Filho, O. Talanta 2000, 52, 681. https://doi.org/10.1016/S0039-9140(00)00420-3
  3. Oliveira, I. R. W. Z.; Barros Osorio, R. E.-H. M.; Neves, A.; Vieira, I. C. Sens. Actuator B-Chem. 2007, 122, 89. https://doi.org/10.1016/j.snb.2006.05.008
  4. Wang, J.; Park, J. N.; Wei, X. Y.; Lee, C. W. Chem. Commun. 2003, 5, 628.
  5. Khachatryan, L.; Adounkpe, J.; Maskos, Z.; Dellinger, B. Environ. Sci.Technol. 2006, 40, 5071. https://doi.org/10.1021/es051878z
  6. Sun, Y. G.; Cui, H.; Li, Y. H.; Lin, Q. X. Talanta 2000, 53, 661. https://doi.org/10.1016/S0039-9140(00)00550-6
  7. Kirk, R. E.; Othmer, D. F. Encyclopedia of Chemical Technology, 3rd ed.; Wiley: New York, 1981; p 39.
  8. Zhao, G.; Li, M.; Hu, Z.; Li, H.; Cao, T. J.Mol. Catal. A: Chem. 2006, 255, 86. https://doi.org/10.1016/j.molcata.2006.03.039
  9. Aziz, M. A.; Selvaraju, T.; Yang, H. Electroanalysis 2007, 19, 1543. https://doi.org/10.1002/elan.200703905
  10. Bai, J.; Guo, L.; Ndamanisha, J. C. J. Appl. Electrochem. 2009, 39, 2497. https://doi.org/10.1007/s10800-009-9941-z
  11. Xie, T.; Liu, Q.; Shi, Y. J.Chromatogr. A 2006, 1109, 317. https://doi.org/10.1016/j.chroma.2006.01.135
  12. Lin, H.; Gan, T.; Wu, K. Food Chem. 2009, 113, 701. https://doi.org/10.1016/j.foodchem.2008.07.073
  13. Pistonesi, M. F.; Nezio, M. S. D.; Centurion, M. E.; Palomeque, M. E.; Lista, A. G.; Band, B. S. F. Talanta 2006, 69, 1265. https://doi.org/10.1016/j.talanta.2005.12.050
  14. Fiamegos, Y. C.; Stalikas, C. D.; Pilidis, G. A.; Karayannis, M. I. Anal. Chim. Acta 2000, 403, 315. https://doi.org/10.1016/S0003-2670(99)00644-3
  15. Robards, K. J. Chromatogr. A 2003, 1000, 657. https://doi.org/10.1016/S0021-9673(03)00058-X
  16. Clement, R. E.; Yang, P. W. Anal. Chem. 2001, 73, 2761. https://doi.org/10.1021/ac0103930
  17. Yang, P.; Wei, W.; Yang, L. Microchim. Acta 2007, 157, 229. https://doi.org/10.1007/s00604-006-0682-y
  18. Lijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  19. Mc Creery, R. L. In Electroanalytical Chemistry: A Series of Advances, Bard, A. J., Ed., Marcel Dekker: New York, 1991, 17, 221.
  20. Qi, H.; Zhang, C. Electroanalysis 2005, 17, 832. https://doi.org/10.1002/elan.200403150
  21. Kim, S. K.; Jeong, Y. N.; Ahmed, M. S.; You, J.-M.; Choi, H. C.; Jeon, S. Sens. Actuator B-Chem. 2011, 153, 246. https://doi.org/10.1016/j.snb.2010.10.039
  22. Tarley, C. R. T.; Kubota, L. T. Anal. Chim. Acta 2005, 548, 11. https://doi.org/10.1016/j.aca.2005.05.055
  23. Li, M.; Ni, F.; Wang, Y.; Xu, S.; Zhang, D.; Chen, S.; Wang, L. Electroanalysis 2009, 21, 1521. https://doi.org/10.1002/elan.200804573
  24. Zhao, D. M.; Zhang, X. H.; Feng, L. J.; Jia, L.; Wang, S. F. Colloids and Surf., B: Biointerfaces 2009, 74, 317. https://doi.org/10.1016/j.colsurfb.2009.07.044
  25. Ahammad, A. J. S.; Sarker, S.; Rahman, M. A.; Lee, J.-J. Electroanalysis 2010, 22, 694. https://doi.org/10.1002/elan.200900449
  26. Zhang, H.; Zhao, J. S.; Liu, H.; Liu, R.; Wang, H.; Liu, J. Microchim Acta 2010, 169, 277. https://doi.org/10.1007/s00604-010-0349-6
  27. Yu, Q.; Liu, Y.; Liu, X.; Zeng, X.; Luo, S.; Wei, W. Electroanalysis 2010, 22, 1012. https://doi.org/10.1002/elan.200900482
  28. Wang, Z.; Sun, Z.; Zhu, H.; Gao, G.; Liu, H.; Zhao, X. Electroanalysis 2010, 22, 1737. https://doi.org/10.1002/elan.200900575
  29. Li, D.-W.; Li, Y.-T.; Song, W.; Long, Y.-T. Anal. Methods 2010, 2, 837. https://doi.org/10.1039/c0ay00076k

Cited by

  1. Optical fiber spectroelectrochemical device for detection of catechol at press-transferred single-walled carbon nanotubes electrodes vol.405, pp.11, 2013, https://doi.org/10.1007/s00216-013-6762-z
  2. Electrochemical application of titanium dioxide nanoparticle/gold nanoparticle/multiwalled carbon nanotube nanocomposites for nonenzymatic detection of ascorbic acid vol.18, pp.2, 2014, https://doi.org/10.1007/s10008-013-2277-y
  3. A novel palladium nanoparticles-polyproline-modified graphite electrode and its application for determination of curcumin vol.18, pp.6, 2014, https://doi.org/10.1007/s10008-014-2382-6
  4. Unraveling nanoscale conduction and work function in a poly(3,4-ethylenedioxypyrrole)/carbon nanotube composite by Kelvin probe force microscopy and conducting atomic force microscopy vol.70, pp.None, 2011, https://doi.org/10.1016/j.electacta.2012.03.051
  5. Electrochemical performance of TiO2/Au/carbon nanotubes composite interface for hydroquinone detection vol.8, pp.8, 2011, https://doi.org/10.1049/mnl.2013.0195