DOI QR코드

DOI QR Code

The Concentration-Dependent Distribution of Tris(4,7'-diphenyl-1,10'-phenanthroline) Ruthenium (II) within Sol-Gel-Derived Thin Films

  • Lee, Joo-Woon (Chemistry-School of Liberal Arts and Sciences, Chungju National University) ;
  • Cho, Eun-Jeong (The Texas Institute for Drug and Diagnostic Development, The University of Texas at Austin)
  • 투고 : 2011.05.27
  • 심사 : 2011.07.08
  • 발행 : 2011.08.20

초록

Organic dye-doped glasses, viz., ruthenium (II) tris(4,7'-diphenyl-1,10'-phenanthroline) $[Ru(dpp)_3]^{2+}$ incorporated into thin silica xerogel films produced by the sol-gel method, were prepared and their $O_2$ quenching properties investigated as a function of the $[Ru(dpp)_3]^{2+}$ concentration (3-400 ${\mu}M$) within the xerogel. The ratio of the luminescence from the $[Ru(dpp)_3]^{2+}$-doped films in the presence of $N_2$ and $O_2$ ($I_{N2}/I_{O2}$) was used to describe the film sensitivity to $O_2$ quenching. ($I_{N2}/I_{O2}$ changed three-fold over the $[Ru(dpp)_3]^{2+}$ concentration range. Time-resolved intensity decay studies showed that there are two discrete $[Ru(dpp)_3]^{2+}$ populations within the xerogels (${\tau}_1$ ~ 300 ns; ${\tau}_2$ ~ 3000 ns) whose relative fraction changes as the $[Ru(dpp)_3]^{2+}$ concentration changes. The increased $O_2$ sensitivity that is observed at the higher $[Ru(dpp)_3]^{2+}$ concentrations is a manifestation of a greater fraction of the 3000 ns $[Ru(dpp)_3]^{2+}$ species (more susceptible to $O_2$ quenching). A model is presented to describe the observed response characteristics resulting from $[Ru(dpp)_3]^{2+}$ distribution within the xerogel.

키워드

참고문헌

  1. Ciriminna, R.; Cara, P. D.; Sciortino, M.; Pagliaro, M. Adv. Syn. Cat. 2011, 353(5), 677-687. https://doi.org/10.1002/adsc.201000731
  2. Liu, J. W.; Yang, Y.; Chen, C. F.; Ma, J. T. Langmuir. 2010, 26(11), 9040-9044. https://doi.org/10.1021/la904888d
  3. Tran-Thi, T. H.; Dagnelie, R.; Crunaire, S.; Nicole, L. Chem. Soc. Rev. 2011, 40(2), 621-639. https://doi.org/10.1039/c0cs00021c
  4. Adamski, J.; Kochana, J. Cent. Eur. J. Chem. 2011, 9(1), 185-191. https://doi.org/10.2478/s11532-010-0136-6
  5. Monton, M. R. N.; Lebert, J. M.; Little, J. R. L.; Nair, J. J.; McNulty, J.; Brennan, J. D. Anal. Chem. 2010, 82(22), 9365- 9373. https://doi.org/10.1021/ac101949s
  6. Menaa, B.; Menaa, F.; Aiolfi-Guimaraes, C.; Sharts, O. Int. J. Nanotechnol. 2010, 7(1), 1-45. https://doi.org/10.1504/IJNT.2010.029546
  7. Ahn, J. Y.; Jo, M.; Dua, P.; Lee, D.; Kim, S. Oligonucleotides 2011, 21(2), 93-100. https://doi.org/10.1089/oli.2010.0263
  8. Si, Z.; Li, J.; Li, B.; Zhao, F.; Liu, S.; Li, W. Inorg. Chem. 2007, 46(15), 6155-6163. https://doi.org/10.1021/ic061645o
  9. Hamity, M.; Senz, A.; Gsponer, H. J. Photochem. Photobiol. A-Chem. 2006, 180(1-2), 9-14. https://doi.org/10.1016/j.jphotochem.2005.09.008
  10. Lu, W.; Mi, B. X.; Chan, M. C. W.; Hui, Z.; Che, C. M.; Zhu, N.; Lee, S. T. J. Am. Chem. Soc. 2004, 126(15), 4958-4971. https://doi.org/10.1021/ja0317776
  11. Watkins, A. N.; Ingersoll, C. M.; Baker, G. A.; Bright, F. V. Anal. Chem. 1998, 70(16), 3384-3396. https://doi.org/10.1021/ac9803481
  12. Daivasagaya, D. S.; Yao, L.; Yung, K. Y.; Hajj-Hassan, M.; Cheung, M. C.; Chodavarapu, V. P.; Bright, F. V. Sensor. Actuat. B-Chem. 2011, 157(2), 408-416. https://doi.org/10.1016/j.snb.2011.04.074
  13. Navarro, R. M.; Alvarez-Galvan, M. C.; de la Mano, J. A. V.; Al- Zahrani, S. M.; Fierro, J. L. G. Ener. Environ.Sci. 2010, 3(12), 1865-1882. https://doi.org/10.1039/c001123a
  14. Grist, S. M.; Chrostowski, L.; Cheung, K. C. Sensors 2010, 10(10), 9286-9316. https://doi.org/10.3390/s101009286
  15. Carraway, E. R.; Demas, J. N.; Degraff, B. A. Anal. Chem. 1991, 63(4), 332-336. https://doi.org/10.1021/ac00004a006
  16. Carraway, E. R.; Demas, J. N.; Degraff, B. A.; Bacon, J. R. Anal. Chem. 1991, 63(4), 337-342. https://doi.org/10.1021/ac00004a007
  17. Lin, C.; Böttcher, W.; Chou, M.; Creutz, C.; Sutin, N. J. Amer. Chem. Soc. 1976, 98(21), 6536-6544. https://doi.org/10.1021/ja00437a020
  18. Ener, M. E.; Lee, Y. T.; Winkler, J. R.; Gray, H. B.; Cheruzel, L. Proc. Nat. Acad. Sci. 2010, 107(44), 18783-18786. https://doi.org/10.1073/pnas.1012381107
  19. Wu, X.; Song, L.; Li, B.; Liu, Y. J. Lumin. 2010, 130(3), 374-379. https://doi.org/10.1016/j.jlumin.2009.09.023
  20. Ji, S.; Wu, W.; Song, P.; Han, K.; Wang, Z.; Liu, S.; Guo, H.; Zhao, J. J. Mater. Chem. 2010, 20(10), 1953-1963. https://doi.org/10.1039/b916468e
  21. Matthews, L. R.; Wang, X. J.; Knobbe, E. Mater. Res. Soc. Symp. Proc. 1994, 329, 285-285.
  22. Baker, G. A.; Wenner, B. R.; Watkins, A. N.; Bright, F. V. J. Solgel Sci. Technol. 2000, 17(1), 71-82. https://doi.org/10.1023/A:1008765106291
  23. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
  24. Bonzagni, N. J.; Baker, G. A.; Pandey, S.; Niemeyer, E. D.; Bright, F. V. J. Sol-gel Sci. Technol. 2000, 17(1), 83-90. https://doi.org/10.1023/A:1008717207199
  25. Xu, W.; Schmidt, R.; Whaley, M.; Demas, J. N.; DeGraff, B. A.; Karikari, E. K.; Farmer, B. L. Anal. Chem. 1995, 67(18), 3172- 3180. https://doi.org/10.1021/ac00114a012
  26. Jordan, J. D.; Dunbar, R. A.; Bright, F. V. Anal. Chem. 1995, 67(14), 2436-2443. https://doi.org/10.1021/ac00110a019
  27. Demas, J.; DeGraff, B. J. Chem. Edu. 1997, 74(6), 690-695. https://doi.org/10.1021/ed074p690
  28. Beechem, J. M.; Brand, L. Annu. Rev. Biochem. 1985, 54, 43-71. https://doi.org/10.1146/annurev.bi.54.070185.000355