DOI QR코드

DOI QR Code

CdTe Quantum Dots as Fluorescent Probes for Josamycin Determination

  • Peng, Jinyun (Department of Chemistry and Biological Science, Guangxi Normal University of Nationalities) ;
  • Nong, Keliang (Department of Chemistry and Biological Science, Guangxi Normal University of Nationalities) ;
  • Mu, Guangshan (Department of Chemistry and Biological Science, Guangxi Normal University of Nationalities) ;
  • Huang, Fengying (Department of Chemistry and Biological Science, Guangxi Normal University of Nationalities)
  • Received : 2011.03.29
  • Accepted : 2011.07.04
  • Published : 2011.08.20

Abstract

A new method for the determination of josamycin has been developed based on quenching of the fluorescence of 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by josamycin in ethanol. Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with josamycin were investigated. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of josamycin between 12.0 and 120.0 ${\mu}g\;mL^{-1}$ with a correlation coefficient of 0.9956 and a detection limit of 2.5 ${\mu}g\;mL^{-1}$. The proposed method was successfully applied to commercial tablets, and the results were satisfactory, i.e. consistent with those of high-performance liquid chromatography (HPLC).

Keywords

References

  1. Bryskier, A. J.; Butzler, J. P.; Neu, H. C.; Tulkens, P. M. Macrolides: Chemistry, Pharmacology and Clinical Uses; Amette Blackwell: Paris, France, 1993.
  2. Reeves, D. S., Wise, R., Andrews, J. M., White, L. O., Eds., Clinical Antimicrobial Assays; Oxford University Press: Oxford, UK, 1999.
  3. Al-Majed, A. A.; Belal, F.; Ibrahim, K. E. E.; Khalil, N. Y. J. AOAC Int. 2003, 86, 484.
  4. Al-Majed, A. A.; Belal, F.; Khalil, N. Y.; Ibrahim, K. E. E. J. AOAC Int. 2004, 87, 352.
  5. Belal, F.; Al-Majed, A.; Ibrahim, K. E. E.; Khalil, N. Y. J. Pharm. Biomed. Anal. 2002, 30, 705. https://doi.org/10.1016/S0731-7085(02)00358-8
  6. Gomis, D. B.; Ferreras, A. I. A.; Alvarez, M. D. G.; Garcia, E. A. J. Food Sci. 2004, 69, 415.
  7. Daidone, F.; Heuvelmans, R.; Aerden, L.; Hoogmartens, J.; Adams, E. J. Pharm. Biomed. Anal. 2008, 48, 347. https://doi.org/10.1016/j.jpba.2008.02.002
  8. Tad, M.; Biarez, O.; Nicolas, P.; Petitjean, O. J. Chromatogr. 1992, 575, 171. https://doi.org/10.1016/0378-4347(92)80521-Q
  9. Rader, K.; Wildfeuer, A.; Schwedass, A.; Laufen, H. J. Chromatogr. 1985, 344, 416. https://doi.org/10.1016/S0378-4347(00)82051-4
  10. Kikuchi, Y.; Teramura, T.; Sekino, J.; Nishimura, T.; Miura, H.; Watanabe, T.; Higuchi, S. J. Chromatogr. B 1998, 720, 81. https://doi.org/10.1016/S0378-4347(98)00430-7
  11. Berrada, H.; Borrull, F.; Font, G.; Marce, R. M. J. Chromatogr. A 2008, 1208, 83. https://doi.org/10.1016/j.chroma.2008.08.107
  12. Deng, B.; Kang, Y.; Li, X.; Xu, Q. J. Chromatogr. B 2007, 859, 125. https://doi.org/10.1016/j.jchromb.2007.09.014
  13. Amjadi, M.; Manzoori, J. L.; Orooji, M. Bull. Korean Chem. Soc. 2007, 28, 246. https://doi.org/10.5012/bkcs.2007.28.2.246
  14. Zhu, X.; Gong, A.; Yu, S. Spectrochim. Acta A 2008, 69, 478. https://doi.org/10.1016/j.saa.2007.04.026
  15. Chen, J.; Xu, F.; Jiang, H.; Hou, Y.; Rao, Q.; Guo, P.; Ding, S. Food Chem. 2009, 113, 1197. https://doi.org/10.1016/j.foodchem.2008.08.006
  16. Liu, M.; Xu, L.; Cheng, W.; Zeng, Y.; Yan, Z. Spectrochim. Acta A 2008, 70, 1198. https://doi.org/10.1016/j.saa.2007.10.040
  17. Peng, J.; Hu, X. J. Luminesc. 2011, 131, 952. https://doi.org/10.1016/j.jlumin.2010.12.030
  18. Carrillo-Carrion, C.; Simonet, B. M.; Valcarcel, M. Anal. Chim. Acta 2009, 652, 278. https://doi.org/10.1016/j.aca.2009.08.015
  19. Cao, M.; Cao, C.; Liu, M.; Wang, P.; Zhu, C. Microchim. Acta 2009, 165, 341. https://doi.org/10.1007/s00604-009-0140-8
  20. Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. J. Phys. Chem. B 2003, 107, 8. https://doi.org/10.1021/jp025910c
  21. Wu, H.; Liang, J.; Han, H. Microchim. Acta 2008, 161, 81. https://doi.org/10.1007/s00604-007-0801-4
  22. Liang, J. G.; Zhang, S. S.; Ai, X. P.; Ji, X. H.; He, Z. K. Spectrochim. Acta A 2005, 61, 2974. https://doi.org/10.1016/j.saa.2004.11.013
  23. Ma, Y.; Yang, C.; Li, N.; Yang, X. Talanta. 2005, 67, 979. https://doi.org/10.1016/j.talanta.2005.04.027
  24. Yu, D.; Wang, Z.; Liu, Y.; Jin, L.; Cheng, Y.; Zhou, J.; Cao, S. Enzyme Microb. Tech. 2007, 41, 127. https://doi.org/10.1016/j.enzmictec.2006.12.012
  25. Seitz, W. R. Treatise on Analytical Chemistry; Wiley: New York, 1981.
  26. Liang, J.; Huang, S.; Zeng, D.; He, Z.; Ji, X.; Ai, X.; Yang, H. Talanta 2006, 69, 126. https://doi.org/10.1016/j.talanta.2005.09.004

Cited by

  1. One-pot synthesis of CdTe quantum dots using tellurium dioxide as a tellurium source in aqueous solution vol.291, pp.6, 2013, https://doi.org/10.1007/s00396-012-2860-2
  2. Interaction of quercetin with aqueous CdSe/ZnS quantum dots and the possible fluorescence probes for flavonoids vol.6, pp.5, 2014, https://doi.org/10.1039/C3AY41745J
  3. Pre-concentration and determination of fluorescence quenching of CdS quantum dots of Pb ions by dispersive liquid–liquid microextraction in the presence of the ionic liquids vol.47, pp.2, 2018, https://doi.org/10.1108/PRT-11-2015-0115