DOI QR코드

DOI QR Code

Preparation of HMX by Catalytic Nitrolysis of DPT in AIL-N2O5-HNO3 System

  • He, Zhi-Yong (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Luo, Jun (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Lu, Chun-Xu (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Wang, Ping (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Xu, Rong (Institute of Chemical Materials, CAEP) ;
  • Li, Jin-Shan (Institute of Chemical Materials, CAEP)
  • Received : 2011.04.10
  • Accepted : 2011.06.27
  • Published : 2011.08.20

Abstract

Direct nitrolysis of 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT) is a feasible way to synthesize HMX, and it has multiple practical applications. In this paper, a new nitrolysis process involving the use of an $N_2O_5-HNO_3$ system catalyzed by acidic ionic liquids (AILs) was developed. The results show that [$Et_3NH$]TsO was the best catalyst among the 28 AILs used and that HMX was formed at a higher yield of 61%, compared to 45% without any AIL. Moreover, with the addition of $N_2O_5$, the yield was further increased to a maximum value of 69%. The AILs were also efficiently recovered by simple extractions without any apparent loss of catalytic activity, even after five runs.

Keywords

References

  1. Siele, V. I.; Gilbert, E. E. 1976, US Patent 3,939,148.
  2. Chen, J.; Wang, S. F. Propellants Explosives Pyrotechnics 1984, 9, 58. https://doi.org/10.1002/prep.19840090206
  3. Greenfield, M.; Guo, Y. Q.; Bernstein, E. R. Chem. Phys. Lett. 2006, 430, 277. https://doi.org/10.1016/j.cplett.2006.09.025
  4. Radhakrishnan, S.; Talawar, M. B.; Venugopalan, S. J. Hazardous Materials 2008, 152, 1317. https://doi.org/10.1016/j.jhazmat.2007.08.006
  5. Bachmann, W. E.; Horton, W. J.; Jenner, E. L. J. Am. Chem. Soc. 1951, 7, 2769.
  6. Castorina, T. C.; Holahan, F. S.; Graybush, R. J. J. Am. Chem. Soc. 1960, 82, 1617. https://doi.org/10.1021/ja01492a026
  7. Bachmann, W. E.; Sheehan, J. C. J. Am. Chem. Soc. 1949, 71, 1842. https://doi.org/10.1021/ja01173a092
  8. Bachmann, W. E.; Jenner, E. L. J. Am. Chem. Soc. 1951, 73, 2773. https://doi.org/10.1021/ja01150a100
  9. Castorina, T. C.; Autera, J. R. I&E Chemical Process Development Res. Dev. 1964, 4, 170.
  10. Bachmann, W. E.; Horton, W. J.; Jenner, E. L. J. Am. Chem. Soc. 1951, 73, 2769. https://doi.org/10.1021/ja01150a099
  11. Chen, L.; Chen, Z. M.; Chen, X. H. Chinese Journal of Explosives & Propellants 1986, 3, 1.
  12. Li, Q. L.; Chen, J.; Wang, J. L. Chinese Journal of Energetic Materials 2007, 15, 509.
  13. Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons: Chichester, 2007; pp 351-356.
  14. Cao, X. M.; Li, F. P. High Energy Explosives of HMX and its Applications; Weapon Industry press: Beijing, 1993; pp 175-180.
  15. Lyushnina, G. A.; Bryukhanov, A. Y.; Turkina, M. Russian. J. Org. Chem. 2001, 37, 1030. https://doi.org/10.1023/A:1012443003868
  16. Siele, V. I.; Warman, M.; Leccacorvi, J. Propellants Explosives Pyrotechnics 1981, 6, 67. https://doi.org/10.1002/prep.19810060304
  17. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
  18. DuPont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. https://doi.org/10.1021/cr010338r
  19. Sheldon, R. F. Chem. Comm. 2001, 2399.
  20. Poliakoff, M.; Fitzpartrick, J. M. Science 2002, 297, 807. https://doi.org/10.1126/science.297.5582.807
  21. Blanchard, L. A.; Hancu, K. R.; Beckman, E. J. Nature 1999, 399, 28.
  22. Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792. https://doi.org/10.1126/science.1090313
  23. Greaves, T. L.; Drummond, C. J. Chem. Rev. 2008, 108, 206. https://doi.org/10.1021/cr068040u
  24. Peter, N.; Ben, T.; Kristof, V. H. Cryst. Growth. Des. 2008, 8, 1353. https://doi.org/10.1021/cg701187t
  25. Parvulescu, V.; Hardacre, I. C. Chem. Rev. 2007, 107, 2615. https://doi.org/10.1021/cr050948h
  26. Lee, S. G. Chem. Comm. 2006, 10, 1049.
  27. Fei, Z. F.; Geldbach, T. J.; Zhao, D. B. Chem. Eur. J. 2006, 12, 2122. https://doi.org/10.1002/chem.200500581
  28. Qiao, K.; Hagiwara, H.; Yokoyama, C. J. J.Mol. Cata.l A: Chem. 2006, 246, 65. https://doi.org/10.1016/j.molcata.2005.07.031
  29. Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons: Chichester, 2007; pp 249-258.
  30. He, Z. Y.; Luo, J.; Lv, C. X. Chinese Journal of Explosives Propellants 2010, 33, 1.
  31. Qian, H.; Ye, Z. W.; Lv, C. X. Ultrason Sonochem. 2008, 15, 326. https://doi.org/10.1016/j.ultsonch.2007.06.002
  32. Qian, H.; Ye, Z. W.; Lv, C. X. Chinese Journal of Applied Chemistry 2008, 25, 378.
  33. Cheng, G. B.; Li, X.; Qi, X. F. Theory and Practice of Energetic Materials 2009, 8, 48.
  34. Zhi, H. Z.; Luo, J.; Feng, G. A. Chin. Chem. Let. 2009, 20, 379. https://doi.org/10.1016/j.cclet.2008.12.040
  35. Qi, X. F. Study on Nitration (Nitrolysis) in the Presence of Brønsted Acidic Ionic Liquids; Nanjing University of Science and Technology: Nanjing, 2008; pp 25-48.
  36. Qi, X. F.; Cheng, G. B.; Duan, X. L. Chinese Journal of Explosives & Propellants 2007, 30, 12.
  37. Cole, A. C.; Jensen, J. L.; Ntai, I. L. J. Am. Chem. Soc. 2002, 124, 5962. https://doi.org/10.1021/ja026290w
  38. Qi, X. F.; Cheng, G. B.; Lv, C. X. Chin J. Appl. Chem. 2008, 2, 147.
  39. Ganeshpure, P. A.; George, G.; Jagannath, D. J. Mol. Catal A: Chemical. 2008, 279, 182. https://doi.org/10.1016/j.molcata.2007.06.025
  40. Liu, S.; Xie, C.; Yu, S. Catal. Comm. 2008, 9, 1634. https://doi.org/10.1016/j.catcom.2008.01.017
  41. Zhi, H. Z.; Luo, J.; Ma, W. Chemical Journal of Chinese Universities 2008, 29, 2007.
  42. Ren, T. S. Nitramine and Nitrate Ester Explosives, Chemistry and Technology; Weapon Industry Press: Beijng, 1994; pp 163-169.
  43. Chio, C. S.; Boutin, H. P. Acta. Cryst. 1970, B26, 1235.

Cited by

  1. -hydroxymethyldialkylamines in fuming nitric acid vol.8, pp.34, 2018, https://doi.org/10.1039/C8RA03268H
  2. Kinetic and experimental study on the reaction of 3,7-dinitro-1,3,5,7-tetraazabicyclo[3.3.1]nonane in nitric acid vol.4, pp.3, 2019, https://doi.org/10.1039/c8re00299a