DOI QR코드

DOI QR Code

Effect of Structural and Morphological Changes on the Conductivity of Stretched PANI-DBSA/HIPS Film

  • Received : 2011.04.04
  • Accepted : 2011.06.27
  • Published : 2011.08.20

Abstract

We studied the effect of structural and morphological changes on the conductivity of a stretched conducting polymer film. To improve the poor processability of polyaniline, we used dodecylbenzenesulfonic acid as both a surfactant and a dopant during emulsion polymerization, followed by blending with high-impact polystyrene. UV-Vis/NIR spectra were obtained to observe conformational changes, and SEM and AFM were used to investigate morphological changes. FT-IR dichroism was applied to determine the microscopic orientation, and XRD patterns were obtained for quantitative crystallinity analysis. The electrical conductivity (${\sigma}_{\parallel}/{\sigma}_{\perp}$) was measured as a function of draw ratio. We found a clear correlation between morphological changes and (${\sigma}_{\parallel}/{\sigma}_{\perp}$), especially at the stretching limit. The conductivity of the films can be modified according to the desired application by controlling their structure and morphology.

Keywords

References

  1. Skotheim, T. A. Handbook of Conducting Polymers; Marcel Dekker: New York, 1986.
  2. Ray, S.; Easteal, A. J.; Cooney, R. P.; Edmonds, N. R. Mat. Chem. Phys. 2009, 113, 829. https://doi.org/10.1016/j.matchemphys.2008.08.034
  3. Singh, S. K.; Gupta, R. K.; Singh, R. A. Synth. Met. 2009, 159, 2478. https://doi.org/10.1016/j.synthmet.2009.08.015
  4. Liu, C. C.; Lu, B. Y.; Yan, J.; Xu, J. K.; Yue, R. R.; Zhu, Z. J.; Zhou, S. Y.; Hu, X. J.; Zhang, Z.; Chen, P. Synth. Met. 2009, 160, 2481.
  5. Zhang, D. H. Polym. Test. 2007, 26, 9. https://doi.org/10.1016/j.polymertesting.2006.07.010
  6. Ansari, R.; Raofie, F. E-J. Chem. 2006, 3, 35. https://doi.org/10.1155/2006/523275
  7. Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1992, 48, 91. https://doi.org/10.1016/0379-6779(92)90053-L
  8. Pud, A.; Ogurtsov, N.; Korzhenko, A.; Shapoval, G. Prog. Polym. Sci. 2003, 28, 1701. https://doi.org/10.1016/j.progpolymsci.2003.08.001
  9. Afzal, A. B.; Akhtar, M. J.; Ahmad, M. J. Electron Microsc. 2010, 59, 339. https://doi.org/10.1093/jmicro/dfq050
  10. Ebrahim, S. M.; Soliman, M. M.; Latif, M. M. A. E. High Perform. Polym. 2009, 22, 377.
  11. Souza, S. D. Surf. Coat. Technol. 2007, 201, 7574. https://doi.org/10.1016/j.surfcoat.2007.02.027
  12. Pan, W.; He, X.; Chen, Y. Appl. Mech. Mater. 2011, 44, 2195.
  13. Jeong, S. K.; Suh, J. S.; Oh, E. J.; Park, Y. W.; Kim, C. Y.; MacDiarmid, A. G. Synth. Met. 1995, 69, 171. https://doi.org/10.1016/0379-6779(94)02407-P
  14. MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 65, 103. https://doi.org/10.1016/0379-6779(94)90171-6
  15. MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1995, 69, 85. https://doi.org/10.1016/0379-6779(94)02374-8
  16. Feng, J.; MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1997, 84, 131. https://doi.org/10.1016/S0379-6779(97)80680-7
  17. Liu, C.; Zhang, J.; Shi, G.; Chen, F. J. Appl. Polym. Sci. 2004, 92, 171. https://doi.org/10.1002/app.13706
  18. Kang, Y. K.; Kim, S. K.; Lee, C. J. Mater. Sci. Eng.: C 2004, 24, 39. https://doi.org/10.1016/j.msec.2003.09.047
  19. Kumara, K. K. S.; Geethaa, S.; Trivedi, D. C. Curr. Appl. Phys. 2005, 5, 603. https://doi.org/10.1016/j.cap.2004.08.004
  20. Akagi, K.; Shirakawa, H. Synth. Met. 1993, 60, 85. https://doi.org/10.1016/0379-6779(93)91225-Q
  21. Cheah, K.; Forsyth, M.; Simon, G. P. Synth. Met. 1999, 102, 1232. https://doi.org/10.1016/S0379-6779(98)01436-2
  22. Reddy, K. R.; Sin, B. C.; Ryu, K. S.; Noh, J.; Lee, Y. I. Synth. Met. 2009, 159, 1934. https://doi.org/10.1016/j.synthmet.2009.06.018
  23. Min, Y.; Xia, Y.; MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1995, 69, 159. https://doi.org/10.1016/0379-6779(94)02402-K
  24. Wang, P. C.; MacDiarmid, A. G. React. Funct. Polym. 2008, 68, 201. https://doi.org/10.1016/j.reactfunctpolym.2007.09.002
  25. Ryu, K. S.; Chang, S. H.; Kang, S. G.; Oh, E. J.; Yo, C. H. Bull. Korean Chem. Soc. 1999, 20, 333.
  26. Fischer, J. R.; Tang, X.; Scherr, E. M.; Cajipe, V. B.; MacDiarmid, A. G. Synth. Met. 1991, 41, 661. https://doi.org/10.1016/0379-6779(91)91152-Z
  27. Monkman, A. P.; Adams, P. Synth. Met. 1991, 41, 627. https://doi.org/10.1016/0379-6779(91)91146-2
  28. Monkman, A. P.; Adams, P. Synth. Met. 1991, 40, 87. https://doi.org/10.1016/0379-6779(91)91491-R
  29. Abell, L.; Pomfret, S. J.; Adams, P. N.; Middleton, A. C.; Monkman, A. P. Synth. Met. 1997, 84, 803. https://doi.org/10.1016/S0379-6779(96)04154-9
  30. Kim, W. J.; Kim, T. Y.; Ko, J. W.; Kim, Y. S.; Park, C. M.; Suh, K. S. Trans. KIEE. 2004, 53C, 305.
  31. Ruckenstein, E.; Sun, Y. Synth. Met. 1995, 74, 107. https://doi.org/10.1016/0379-6779(95)03358-0
  32. Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Prog. Polym. Sci. 2009, 34, 783. https://doi.org/10.1016/j.progpolymsci.2009.04.003
  33. MacDiarmid, A. G.; Min, Y.; Wiesinger, J. M.; Oh, E. J.; Scherr, E. M.; Epstein, A. J. Synth. Met. 1993, 55, 753. https://doi.org/10.1016/0379-6779(93)90147-O
  34. Oh, E. J.; Min, Y.; Wiesinger, J. M.; Manohar, S. K.; Scherr, E. M.; Prest, P. J.; MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1993, 55, 977. https://doi.org/10.1016/0379-6779(93)90185-Y
  35. MacDiarmid, A. G. Synth. Met. 2001, 125, 11. https://doi.org/10.1016/S0379-6779(01)00508-2
  36. Devendrappa, H.; Subba Rao, U. V.; Ambika Prasad, M. V. N. J. Power Sources 2006, 155, 368. https://doi.org/10.1016/j.jpowsour.2005.05.014
  37. Xia, Y.; Wiesinger, J. M.; MacDiarmid, A. G.; Epstein, A. J. Chem. Mater. 1995, 7, 443. https://doi.org/10.1021/cm00051a002
  38. Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988, 24, 231. https://doi.org/10.1016/0379-6779(88)90261-5
  39. Ruckenstein, E.; Yang, S. Synth. Met. 1993, 53, 283. https://doi.org/10.1016/0379-6779(93)91097-L
  40. Koenig, J. L. Infrared and Raman Spectroscopy of Polymers; Rapra, Rev. Rep. 2001, 12(2).
  41. Lu, X. F.; Hay, J. N. Polym. 2001, 42, 8055. https://doi.org/10.1016/S0032-3861(01)00295-6
  42. Nge, T. T.; Hori, N.; Takemura, A.; Ono, H.; Kimura, T. J. Appl. Polym. Sci. 2003, 90, 1932. https://doi.org/10.1002/app.12870
  43. Hwang, H. Y.; Lee, S. W.; Kim, I. W.; Lee, H. S. Synth. Met. 1995, 69, 225. https://doi.org/10.1016/0379-6779(94)02426-Y
  44. Shujun, W.; Jinglin, Y.; Wenyuan, G. Am. J. Biochem. Biotechnol. 2005, 1, 207. https://doi.org/10.3844/ajbbsp.2005.207.211
  45. Wang, Z. H.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B 1992, 45, 4190. https://doi.org/10.1103/PhysRevB.45.4190

Cited by

  1. Effects of Binary Doping on Chiroptical, Electrochemical, and Morphological Properties of Chiral Polyaniline vol.59, pp.5, 2015, https://doi.org/10.5012/jkcs.2015.59.5.423
  2. A Comparative Study of Potentiodynamic and Potentiostatic Modes in the Deposition of Polyaniline vol.37, pp.9, 2016, https://doi.org/10.1002/bkcs.10887
  3. Growth Processes and Morphological Evolution of Polyaniline Film During Potentiostatic Growth vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11182
  4. The effect of molecular structure, band gap energy and morphology on the dc electrical conductivity of polyaniline/aluminium oxide composites vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001688
  5. Electrodes for Semiconductor Gas Sensors vol.17, pp.4, 2017, https://doi.org/10.3390/s17040683
  6. 전기화학적 중합온도가 Binary 도핑된 키랄 Polyaniline 모폴로지에 미치는 영향 vol.58, pp.5, 2014, https://doi.org/10.5012/jkcs.2014.58.5.456
  7. Improved environmental stability, electrical and EMI shielding properties of vapor‐grown carbon fiber‐filled polyaniline‐based nanocomposite vol.59, pp.5, 2011, https://doi.org/10.1002/pen.25045