DOI QR코드

DOI QR Code

Suzuki-Miyaura Cross-coupling Reaction Catalyzed by Nickel Nanoparticles Supported on Poly(N-vinyl-2-pyrrolidone)/TiO2-ZrO2 Composite

  • Kalbasi, Roozbeh Javad (Department of Chemistry, Shahreza Branch, Islamic Azad University, Razi Chemistry Research Center, Shahreza Branch, Islamic Azad University) ;
  • Mosaddegh, Neda (Department of Chemistry, Shahreza Branch, Islamic Azad University, Razi Chemistry Research Center, Shahreza Branch, Islamic Azad University)
  • Received : 2011.06.14
  • Accepted : 2011.06.20
  • Published : 2011.08.20

Abstract

Nickel nanoparticle-poly(N-vinyl-2-pyrrolidone)/$TiO_2-ZrO_2$ composite (Ni-PVP/$TiO_2-ZrO_2$) was prepared by in situ polymerization method. The physical and chemical properties of Ni-PVP/$TiO_2-ZrO_2$ were investigated by XRD, FT-IR, BET, TGA, SEM and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of methanol-water mixture as solvent. The effects of reaction temperature, the amount of catalyst, amount of support, solvent, and amount of metal for the synthesis of Ni-PVP/$TiO_2-ZrO_2$, were investigated as well as recyclability of the heterogeneous composite. The catalyst used for this synthetically useful transformation showed considerable level of reusability besides very good activity.

Keywords

References

  1. Narayanan, R.; El-Sayed, M. A. J. Am. Chem. Soc. 2003, 125, 8340. https://doi.org/10.1021/ja035044x
  2. Bernechea, M.; de Jesus, E.; Lopez-Mardomingo, C.; Terreros, P. Inorg. Chem. 2009, 48, 4491. https://doi.org/10.1021/ic9002753
  3. Razler, T. M.; Hsiao, Y.; Qian, F.; Fu, R.; Kashif Khan, R.; Doubleday, W. J. Org. Chem. 2009, 74, 1381. https://doi.org/10.1021/jo802277z
  4. Narayanan, R.; El-Sayed, M. A. J. Phys. Chem. B 2004, 108, 8572. https://doi.org/10.1021/jp037169u
  5. Lipshutz, B. H.; Sclafani, J. A. Blomgren, P. A. Tetrahedron 2000, 56, 2139. https://doi.org/10.1016/S0040-4020(99)01096-0
  6. Lipshutz, B. H.; Butler, T.; Swift, E. Org. Lett. 2008, 10, 697. https://doi.org/10.1021/ol702453q
  7. Griffiths, C.; Leadbeater, N. E. Tetrahedron Lett. 2000, 41, 2487. https://doi.org/10.1016/S0040-4039(00)00186-6
  8. Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302. https://doi.org/10.1039/b309033g
  9. Lin, R.-S.; Li, M.-R.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Inorganica Chimica Acta 2010, 363, 3523. https://doi.org/10.1016/j.ica.2010.07.008
  10. Reetz, M. T.; Breinbauer, R.; Wanninger, K. Tetrahedron Lett. 1996, 37, 4499. https://doi.org/10.1016/0040-4039(96)00924-0
  11. Narayanan, R. Molecules 2010, 15, 2124. https://doi.org/10.3390/molecules15042124
  12. Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. J. Am. Chem. Soc. 2004, 126, 5026. https://doi.org/10.1021/ja039757r
  13. Kim, S.-J.; Oh, S.-D.; Lee, S.; Choi, S.-H. J. Ind. Eng. Chem. 2008, 14, 449. https://doi.org/10.1016/j.jiec.2008.02.006
  14. Zim, D.; Monteiro, A. L. Tetrahedron Lett. 2002, 43, 4009. https://doi.org/10.1016/S0040-4039(02)00716-5
  15. Clarke, D.; Ali, M. A.; Clifford, A. A.; Parratt, A.; Rose, P.; Schwinn, D.; Bannwarth, W.; Rayner, C. M. Curr. Top. Med. Chem. 2004, 4, 729. https://doi.org/10.2174/1568026043451096
  16. Bhanage, B. M.; Arai, M. Catal. Rev. Sci. Eng. 2001, 43, 315. https://doi.org/10.1081/CR-100107480
  17. Taguchi, A.; Schuth, F. Micropor. Mesopor. Mat. 2005, 77, 1. https://doi.org/10.1016/j.micromeso.2004.06.030
  18. Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. -J.; Park, J. -H.; Bae, C. J.; Park, J. -G.; Hyeon, T. Adv. Mater. 2005, 17, 429. https://doi.org/10.1002/adma.200400611
  19. You, E.; Li, P.; Wang, L. Synthesis 2006, 9, 1465.
  20. Lu, Y.; Plocher, E.; Hu, Q.-S. Adv. Synth. Catal. 2006, 348, 841. https://doi.org/10.1002/adsc.200606002
  21. Tang, Z.-Y.; Spinella, S.; Hu, Q.-S. Tetrahedron Lett. 2006, 47, 2427. https://doi.org/10.1016/j.tetlet.2006.01.145
  22. Inamoto, K.; Kuroda, J.-I.; Kwon, E.; Hiroya, K.; Doi T. J. Organomet. Chem. 2009, 694, 389. https://doi.org/10.1016/j.jorganchem.2008.11.003
  23. Cho, C. S.; Tran, N. T. Catal. Commun. 2009, 11, 191. https://doi.org/10.1016/j.catcom.2009.09.024
  24. Tao, L.; Xie, Y.; Deng, C.; Li, J. Chin. J. Chem. 2009, 27, 1365. https://doi.org/10.1002/cjoc.200990228
  25. Chanjuan, X.; Yongwei, W.; Xiaoyu, Y. J. Organometallic Chem. 2008, 693, 3842. https://doi.org/10.1016/j.jorganchem.2008.09.042
  26. Koji, S.; Ryouta, T.; Tsukasa, N.; Hisashi, F. Angew. Chem. Int. Ed. 2008, 47, 6917. https://doi.org/10.1002/anie.200802174
  27. Gniewek, A.; Ziolkowski, J. J.; Trzeciaka, A. M.; Zawadzki, M.; Grabowska, H.; Wrzyszcz, J. J. Catal. 2008, 254, 121. https://doi.org/10.1016/j.jcat.2007.12.004
  28. Costa, N. J. S.; Kiyohara, P. K.; Monteiro, A. L.; Coppel, Y.; Philippot, K.; Rossi, L. M. J. Catal. 2010, 276, 382. https://doi.org/10.1016/j.jcat.2010.09.028
  29. Kirschning, A.; Monenschein, H.; Wittenberg, R. Angew. Chem. Int. Ed. 2001, 40, 650. https://doi.org/10.1002/1521-3773(20010216)40:4<650::AID-ANIE6500>3.0.CO;2-C
  30. Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 2000, 1, 3815.
  31. Goettmann, F.; Sanchez, C. J. Mater. Chem. 2007, 17, 24. https://doi.org/10.1039/b608748p
  32. Mark, J. E. Acc. Chem. Res. 2006, 39, 881. https://doi.org/10.1021/ar040062k
  33. Zheng, J.; Li, G.; Ma, X.; Wang, Y.; Wu, G.; Cheng, Y. Sens. Actuators, B 2008, 133, 374. https://doi.org/10.1016/j.snb.2008.02.037
  34. Chung, C. M.; Lee, S. J.; Kim, J. G.; Jang, D. O. J. Non-Crystal. Solids 2002, 311, 195. https://doi.org/10.1016/S0022-3093(02)01800-8
  35. Ostapenko, N.; Dovbeshko, G.; Kozlova, N.; Suto, S.; Watanabe, A. Thin Solid Films 2008, 516, 8944. https://doi.org/10.1016/j.tsf.2007.11.069
  36. Morales, G.; van Grieken, R.; Martin, A.; Martinez, F. Chem. Eng. J. 2010, 161, 388. https://doi.org/10.1016/j.cej.2010.01.035
  37. Gao, B.; Kong, D.; Zhang, Y. J. Mol. Catal. A: Chem. 2008, 286, 143. https://doi.org/10.1016/j.molcata.2008.02.012
  38. Ma, Z. H.; Han, H. B.; Zhou, Z. B.; Nie, J. J. Mol. Catal. A: Chem. 2009, 311, 46. https://doi.org/10.1016/j.molcata.2009.06.021
  39. Alves, M. H.; Riondel, A.; Paul, J. M.; Birot, M.; Deleuze, H. C. R. Chimie 2010, 13, 1301. https://doi.org/10.1016/j.crci.2009.12.001
  40. Kalbasi, R. J.; Kolahdoozan, M.; Massah, A. R.; Shahabian, K. Bull. Korean Chem. Soc. 2010, 31, 2618. https://doi.org/10.5012/bkcs.2010.31.9.2618
  41. Kalbasi, R. J.; Kolahdoozan, M.; Rezaei, M. Mater. Chem. Phys. 2011, 125, 784. https://doi.org/10.1016/j.matchemphys.2010.09.058
  42. Kalbasi, R. J.; Nourbakhsh, A. A.; Babaknezhad, F. Catal. Commun. 2011, 12, 955. https://doi.org/10.1016/j.catcom.2011.02.019
  43. Kalbasi, R. J.; Kolahdoozan, M.; Shahabian, K.; Zamani, F. Catal. Commun. 2010, 11, 1109. https://doi.org/10.1016/j.catcom.2010.05.020
  44. Kalbasi, R. J.; Mosaddegh, N. Catal. Commun. 2011, 12, 1231. https://doi.org/10.1016/j.catcom.2011.04.004
  45. Run, M. T.; Wu, S. Z.; Zhang, D. Y.; Wu, G. Mater. Chem. Phys. 2007, 105, 341. https://doi.org/10.1016/j.matchemphys.2007.04.070
  46. Kalbasi, R. J.; Abbaspourrad, A.; Massah, A. R.; Zamani, F. Chin. J. Chem. 2010, 28, 273. https://doi.org/10.1002/cjoc.201090066
  47. Kalbasi, R. J.; Massah, A. R.; Zamani, F.; Javaherian Naghash, H. Chin. J. Chem. 2010, 28, 397. https://doi.org/10.1002/cjoc.201090086
  48. Chen, D. H.; Hsieh, C. H. J. Mater. Chem. 2002, 12, 2412. https://doi.org/10.1039/b200603k
  49. Ghiaci, M.; Kalbasi, R. J.; Mollahasani, M.; Aghaei, H. Appl. Catal. A: Gen. 2007, 320, 35. https://doi.org/10.1016/j.apcata.2006.12.013
  50. Iwamoto, T.; Matsumoto, K.; Matsushita, T.; Inokuchi, M.; Toshma, N. J. Colloid Interface Sci. 2009, 336, 879. https://doi.org/10.1016/j.jcis.2009.03.083
  51. Metin, O.; Ozkar, S. J. Mol. Catal. A: Chem. 2008, 295, 39. https://doi.org/10.1016/j.molcata.2008.08.014
  52. Hirai, H.; Chawanya, H.; Toshima, N. React. Polym. 1985, 3, 127.
  53. Song, H.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P.; Somorjai, G. A. J. Am. Chem. Soc. 2006, 128, 3027. https://doi.org/10.1021/ja057383r
  54. Chytil, S.; Glomm, W. R.; Vollebekk, E.; Bergem, H.; Walmsley, J.; Sjoblom, J.; Blekkan, E. A. Micropor. Mesopor. Mater. 2005, 86, 198. https://doi.org/10.1016/j.micromeso.2005.06.037
  55. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. https://doi.org/10.1021/cr00039a007
  56. Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133. https://doi.org/10.1021/cr0505674
  57. Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 114, 4350. https://doi.org/10.1002/1521-3757(20021115)114:22<4350::AID-ANGE4350>3.0.CO;2-0
  58. Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. https://doi.org/10.1021/ar800036s
  59. Xu, Q.; Duan, W. L.; Lei, Z.-Y.; Zhu, Z. B.; Shi, M. Tetrahedron 2005, 61, 11225. https://doi.org/10.1016/j.tet.2005.09.010
  60. Yu, Y.; Hu, T.; Chen, X.; Xu, K.; Zhang, J.; Huang, J. Chem. Commun. 2011, 47, 3592. https://doi.org/10.1039/c0cc04498a

Cited by

  1. NiO Nanoparticles: An Efficient Catalyst for the Multicomponent One-Pot Synthesis of Novel Spiro and Condensed Indole Derivatives vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/606259
  2. Hyperhydrophilic three-dimensional crosslinked beads as an effective drug carrier in acidic medium: adsorption isotherm and kinetics appraisal vol.39, pp.5, 2015, https://doi.org/10.1039/C4NJ01999G
  3. Band Gap Modification of TiO2 Nanoparticles by Ascorbic Acid-Stabilized Pd Nanoparticles for Photocatalytic Suzuki-Miyaura and Ullmann Coupling Reactions vol.149, pp.6, 2011, https://doi.org/10.1007/s10562-019-02749-z
  4. An Overview of Solid Supported Palladium and Nickel Catalysts for C-C Cross Coupling Reactions vol.17, pp.5, 2011, https://doi.org/10.2174/1570193x16666190617160339
  5. Facile synthesis of Fe $ _{3}$ O $ _{4}$ @GlcA@Ni-MOF composites as environmentally green catalyst in organic reactions vol.24, pp.None, 2011, https://doi.org/10.1016/j.eti.2021.102050