DOI QR코드

DOI QR Code

Photoemission Study on the Adsorption of Ethanol on Chemically Modified TiO2(001) Surfaces

  • Kong, Ja-Hyun (Department of Energy Systems Research and Department of Chemistry, Ajou University) ;
  • Kim, Yu-Kwon (Department of Energy Systems Research and Department of Chemistry, Ajou University)
  • Received : 2011.06.07
  • Accepted : 2011.06.11
  • Published : 2011.08.20

Abstract

Ethanol is a prototype molecule used in probing catalytic reactivity of oxide catalysts such as $TiO_2$. In the present study, we adsorbed ethanol on $TiO_2$(001) at room temperature (RT) and the corresponding bonding state of ethanol was systematically studied by x-ray photoemission spectroscopy (XPS) using synchrotron radiation. Especially, we compared $TiO_2$(001) surfaces prepared in ultra-high vacuum (UHV) with different surface treatments such as $Ar^+$-sputtering and oxidation with molecular $O_2$, respectively. We find that the saturation coverage of ethanol at RT varies depending on the amount of reduced surface defects (e.g., $Ti^{3+}$) which are introduced by $Ar^+$-sputtering. We also find that the oxidized $TiO_2$(001) surface has other type of surface defects (not related to Ti 3d state) which can dissociate ethanol for further reaction above 600 K. Our C 1s core level spectra indicate clearly resolved features for the two chemically distinct carbon atoms from ethanol adsorbed on $TiO_2$(001), showing the adsorption of ethanol proceeds without C-C bond dissociation. No other C 1s feature for a possible oxidized intermediate was observed up to the substrate temperature of 650 K.

Keywords

References

  1. Diebold, U. Surf. Sci. Rep. 2003, 48, 53. https://doi.org/10.1016/S0167-5729(02)00100-0
  2. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 431. https://doi.org/10.1038/41233
  3. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  4. Wendt, S.; Matthiesen, J.; Schaub, R.; Vestergaard, E. K.; Laegsgaard, E.; Besenbacher, F.; Hammer, B. Phys. Rev. Lett. 2006, 96, 066107. https://doi.org/10.1103/PhysRevLett.96.066107
  5. Zhang, Z.; Bondarchuk, O.; Kay, B. D.; White, J. M.; Dohnalek, Z. J. Phys. Chem. B 2006, 110, 21840. https://doi.org/10.1021/jp063619h
  6. Li, S. C.; Zhang, Z.; Sheppard, D.; Kay, B. D.; White, J. M.; Du, Y.; Lyubinetsky, I.; Henkelman, G.; Dohnalek, Z. J. Am. Chem. Soc. 2008, 130, 9080. https://doi.org/10.1021/ja8012825
  7. Henderson, M. A.; Epling, W. S.; Perkins, C. L.; Peden, C. H. F.; Diebold, U. J. Phys. Chem. B 1999, 103, 5328.
  8. Petrik, N. G.; Zhang, Z. R.; Du, Y. G.; Dohnalek, Z.; Lyubinetsky, I.; Kimmel, G. A. J. Phys. Chem. C 2009, 113, 12407. https://doi.org/10.1021/jp901989x
  9. Du, Y.; Deskins, N. A.; Zhang, Z.; Dohnalek, Z.; Dupuis, M.; Lyubinetsky, I. Phys. Rev. Lett. 2009, 102, 096102. https://doi.org/10.1103/PhysRevLett.102.096102
  10. Zhang, Z.; Du, Y.; Petrik, N. G.; Kimmel, G. A.; Lyubinetsky, I.; Dohnalek, Z. J. Phys. Chem. C 2009, 113, 1908. https://doi.org/10.1021/jp809001x
  11. Zhang, Z. R.; Bondarchuk, E.; Kay, B. D.; White, J. M.; Dohnalek, Z. J. Phys. Chem. C 2007, 111, 3021. https://doi.org/10.1021/jp067461c
  12. Bondarchuk, O.; Kim, Y. K.; White, J. M.; Kim, J.; Kay, B. D.; Dohnalek, Z. J. Phys. Chem. C 2007, 111, 11059. https://doi.org/10.1021/jp072298m
  13. Kim, Y. K.; Kay, B. D.; White, J. M.; Dohnalek, Z. Catal. Lett. 2007, 119, 1. https://doi.org/10.1007/s10562-007-9199-1
  14. Benz, L.; Haubrich, J.; Quiller, R. G.; Jensen, S. C.; Friend, C. M. J. Am. Chem. Soc. 2009, 131, 15026. https://doi.org/10.1021/ja905522c
  15. Benz, L.; Haubrich, J.; Quiller, R. G.; Friend, C. M. Surf. Sci. 2009, 603, 1010. https://doi.org/10.1016/j.susc.2009.02.016
  16. Zhang, Z.; Ge, Q.; Li, S. C.; Kay, B. D.; White, J. M.; Dohnalek, Z. Phys. Rev. Lett. 2007, 99, 126105. https://doi.org/10.1103/PhysRevLett.99.126105
  17. Yim, C. M.; Pang, C. L.; Thornton, G. Phys. Rev. Lett. 2010, 104, 036806. https://doi.org/10.1103/PhysRevLett.104.036806
  18. Du, Y.; Dohnalek, Z.; Lyubinetsky, I. J. Phys. Chem. C 2008, 112, 2649. https://doi.org/10.1021/jp077677u
  19. Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z. S.;Hansen, J. O.; Matthiesen, J.; Blekinge-Rasmussen, A.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2008, 320, 1755. https://doi.org/10.1126/science.1159846
  20. Henrich, V. E.; Dresselhaus, G.; Zeiger, H. J. Phys. Rev. Lett. 1976, 36, 1335. https://doi.org/10.1103/PhysRevLett.36.1335
  21. Kurtz, R. L.; Stock-Bauer, R.; Madey, T. E.; Roman, E. L.; De Segovia, J. L. Surf. Sci. 1989, 218, 178. https://doi.org/10.1016/0039-6028(89)90626-2
  22. Gamble, L.; Jung, L. S.; Campbell, C. T. Surf. Sci. 1996, 348, 1. https://doi.org/10.1016/0039-6028(95)00942-6
  23. Kim, Y. K.; Kay, B. D.; White, J. M.; Dohnalek, Z. Surf. Sci. 2008, 602, 511. https://doi.org/10.1016/j.susc.2007.10.049
  24. Kim, Y. K.; Kay, B. D.; White, J. M.; Dohnalek, Z. J. Phys. Chem. C 2007, 111, 18236. https://doi.org/10.1021/jp075608+
  25. Campbell, C. T. Surf. Sci. Rep. 1997, 27, 1. https://doi.org/10.1016/S0167-5729(96)00011-8
  26. Farfan-Arribas, E.; Madix, R. J. J. Phys. Chem. B 2002, 106, 10680. https://doi.org/10.1021/jp020729p
  27. Hwang, H. N.; Kim, H. S.; Kim, B.; Hwang, C. C.; Moon, S. W.; Chung, S. M.; Jeon, C.; Park, C. Y.; Chae, K. H.; Choi, W. K. Nucl. Instrum. Methods Phys. Res. A 2007, 581, 850. https://doi.org/10.1016/j.nima.2007.07.148
  28. Mason, C. G.; Tear, S. P.; Doust, T. N.; Thornton, G. J. Phys. Condens. Matt. 1991, 3, S97. https://doi.org/10.1088/0953-8984/3/S/015
  29. Ariga, H.; Taniike, T.; Morikawa, H.; Tada, M.; Min, B. K.; Watanabe, K.; Matsumoto, Y.; Ikeda, S.; Saiki, K.; Iwasawa, Y. J. Am. Chem. Soc. 2009, 131, 14670. https://doi.org/10.1021/ja9066805
  30. Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.; Catalette, H. Theor. Chem. Acc. 2007, 117, 565. https://doi.org/10.1007/s00214-006-0189-y
  31. Ramamoorthy, M.; Vanderbilt, D.; King-Smith, R. D. Phys. Rev. B 1994, 49, 16721. https://doi.org/10.1103/PhysRevB.49.16721
  32. Kim, Y. K.; Lee, M. H.; Yeom, H. W. Phys. Rev. B 2005, 7111, 5311.
  33. Palgrave, R. G.; Payne, D. J.; Egdell, R. G. J. Mater. Chem. 2009, 19, 8418. https://doi.org/10.1039/b913267h
  34. Takahashi, I.; Payne, D. J.; Palgrave, R. G.; Egdell, R. G. Chem. Phys. Lett. 2008, 454, 314. https://doi.org/10.1016/j.cplett.2008.02.031
  35. Nambu, A.; Graciani, J.; Rodriguez, J. A.; Wu, Q.; Fujita, E.; Fdez Sanz, J. J. Chem. Phys. 2006, 125, 094706. https://doi.org/10.1063/1.2345062
  36. Tait, R. H.; Kasowski, R. V. Phys. Rev. B 1979, 20, 5178. https://doi.org/10.1103/PhysRevB.20.5178
  37. Kempgens, B.; Kivimaki, A.; Itchkawitz, B. S.; Koppe, H. M.; Schmidbauer, M.; Neeb, M.; Maier, K.; Feldhaus, J.; Bradshaw, A. M. J. Electron. Spectrosc. Relat. Phenom. 1998, 93, 39. https://doi.org/10.1016/S0368-2048(98)00156-X
  38. Jayaweera, P. M.; Quah, E. L.; Idriss, H. J. Phys. Chem. C 2007, 111, 1764. https://doi.org/10.1021/jp0657538
  39. Bondarchuk, O.; Huang, X.; Kim, J.; Kay, B. D.; Wang, L. S.; White, J. M.; Dohnalek, Z. Angew. Chem. 2006, 45, 4786. https://doi.org/10.1002/anie.200600837