References
- 김인철, 이주용, 이정렬 (2010). 해운대 해수욕장의 이안류 발 생기구 및 수치모의. 한국해안해양공학회논문집, 23(1), 70-78.
- 부산광역시 해운대구 (2009). 해운대해수욕장 연안정비사업 기본설계용역 보고서 (제6권 수치모형실험, 제7권 수리모형실험).
- 윤성범, 배재석, 박원경, 최준우 (2010). 해운대 이안류 발생 역학과 수치모의 기법 분석. 한국해안해양공학회 학술발표논문집, 19, 121-124.
- Bowen, A. (1969). Rip currents 1. Theoretical investigations. J. Geophys. Res., 74(23), 5479-5490. https://doi.org/10.1029/JC074i023p05479
- Bowen, A. and Inman, D. (1969). Rip currents 2. Laboratory and field observations. J. Geophys. Res., 74 (C3), 5479-5490. https://doi.org/10.1029/JC074i023p05479
- Chen, Q., Dalrymple, R., Kirby, J., Kennedy, A. and Haller, M. (1999). Boussinesq modelling of a rip current system. J. Geophys. Res., 104, 20617-20637. https://doi.org/10.1029/1999JC900154
- Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A. and Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup. II: 2d. J. Wtrwy., Port, Coast. and Ocean Eng., 126 (1), 48-56. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
- Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003). Boussinesq modeling of longshore current. J. of Geophys. Res., 108(C11), 26-1-26-18.
- Choi, J., Lim, C.H., Lee, J.I. and Yoon, S.B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Engineering, 56, 297-312. https://doi.org/10.1016/j.coastaleng.2008.09.002
- Choi, J. and Yoon, S.B. (2011). Numerical simulation of nearshore circulation on field topography in a random wave environment. Coastal Engineering (in press).
- Dalrymple, R.A. (1975). A mechanism for rip current generation on an open coast. J. Geophys. Res., 80, 3485-3487. https://doi.org/10.1029/JC080i024p03485
- Dalrymple, R.A. (1978). Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, 1414-1427.
- Dalrymple, R.A. and Lozano, C. (1978). Wave current interaction models for rip currents. J. Geophys. Res., 83 (C12), 6063. https://doi.org/10.1029/JC083iC12p06063
- Dronen, N., Karunarathna, H., Fredsoe, J., Sumer, B.M. and Deigaard R. (2002). An experimental study of rip channel flow. Coast. Eng., 45, 223-238. https://doi.org/10.1016/S0378-3839(02)00035-2
- Haas, K., Svendsen, I., Haller, M. and Zhao, Q. (2003). Quasithree- dimensional modeling of rip current systems. J. Geophys. Res., 108 (C7), 3217. https://doi.org/10.1029/2002JC001355
- Haller, M., Dalrymple, R. and Svendsen, I. (2002). Experimental study of nearshore dynamics on a barred beach with rip channels. J. Geophys. Res., 107 (C6), doi:10.1029/2001JC000955.
- Hammack, J., Scheffner, N. and Segur, H. (1991). A note on the generation and narrowness of periodic rip currents. J. Geophys. Res., 96 (C3), 4909-4914. https://doi.org/10.1029/90JC02304
- Johnson, D. and Pattiaratchi, C. (2006). Boussinesq modelling of transient rip currents. Coastal Engineering, 53, 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
- MacMahan, J.H., Reniers, A.J.H.M., Thornton, E.B. and Stanton, T.P. (2004). Infragravity rip current pulsations. J. Geophys. Res., 109, C01033.
- MacMahan, J.H., Reniers, A.J.H.M., Thornton, E.B. and Stanton, T.P. (2004). Surf zone eddies coupled with rip current morphology. J. Geophys. Res., 109, C07004.
- Noda, E.K. (1974). Wave induced nearshore circulation. J. Geophys. Res., 79 (1974), 4097-4106. https://doi.org/10.1029/JC079i027p04097
- Shepard, F.P. (1936). Undertow, rip tide or "rip current," Science, 21, pp. 181-182.
- Tang, E.S. and Dalrymple, R.A. (1989). Nearshore circulation: rip currents and wave groups. Advances in Coastal and Ocean Engineering. Plenum Press, New York, 205-230.
- Wei, G., Kirby, J., Grilli, S.T. and Subraymanya, R. (1995). A fully non-linear Boussinesq model for surface waves: I. Highly non-linear, unsteady waves. J. Fluid Mech., 294, 71-92. https://doi.org/10.1017/S0022112095002813
- Wei, G., Kirby, J. and Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method. Coast. Eng., 36, 271-299. https://doi.org/10.1016/S0378-3839(99)00009-5
- Yu, J. and Slinn, D. (2003). Effects of wave-current interaction on rip currents. J. Geophys. Res., 108 (C3), 3088, doi:10.1029/ 2001JC001105.
Cited by
- Rip Current Sensitive Analysis Using Rose Diagram for Wave-Induced Current Vectors at Haeundae Beach, Korea vol.30, pp.4, 2016, https://doi.org/10.5574/KSOE.2016.30.4.320
- Numerical Study on a Dominant Mechanism of Rip Current at Haeundae Beach: Honeycomb Pattern of Waves vol.32, pp.5B, 2012, https://doi.org/10.12652/Ksce.2012.32.5B.321
- Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation vol.46, pp.2, 2013, https://doi.org/10.3741/JKWRA.2013.46.2.205
- Analysis of Hydraulic Characteristic in Surf Zone using the SWASH Model during Typhoon NAKRI(1412) in Haeundae Beach vol.21, pp.5, 2015, https://doi.org/10.7837/kosomes.2015.21.5.591
- Characteristics of Wave-induced Currents using the SWASH Model in Haeundae Beach vol.27, pp.6, 2015, https://doi.org/10.9765/KSCOE.2015.27.6.382
- Numerical Simulations of Rip Currents Under Phase-Resolved Directional Random Wave Conditions vol.27, pp.4, 2015, https://doi.org/10.9765/KSCOE.2015.27.4.238
- Study of Rip Current Warning Index Function according to Real-time Observations at Haeundae Beach in 2012 vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1191