DOI QR코드

DOI QR Code

Boussinesq Modeling of a Rip Current at Haeundae Beach

Boussinesq 방정식 모형을 이용한 해운대 이안류 수치모의

  • 최준우 (한국건설기술연구원 하천해안항만연구실) ;
  • 박원경 (한양대학교 대학원 건설환경공학과) ;
  • 윤성범 (한양대학교 건설환경공학과)
  • Received : 2011.01.31
  • Accepted : 2011.07.23
  • Published : 2011.08.29

Abstract

The rip current occurred at Haeundae beach was numerically investigated under directional random wave environment. The numerical simulation was performed using a fully nonlinear Boussinesq equation model, FUNWAVE which is capable of simulating nearshore circulation since it includes the effect of wave-induced momentum flux and horizontal turbulent mixing. The results of numerical simulation show the time-dependent evolution of the wave-induced nearshore circulation system (including rip current) that are caused by nonlinear transformation of directional irregular waves due to unique topography of Haeundae. From the results, it was found that rip current is well generated and developed where relatively lower wave height and relatively deeper water depth along the longshore direction, and sudden and strong events of rip current were observed.

파랑 잉여응력의 영향이 자동적으로 고려되므로 파랑으로부터 발생되는 흐름을 수치모의할 수 있는 수평점성 및 난류항이 포함된 Boussinesq 방정식 모형인 FUNWAVE를 이용하여, 다방향 불규칙파 조건으로 해운대 해안에서 발생하는 이안류를 수치모의하였다. 수치모의는 다방향 불규칙파의 전파양상과 지형에 의한 비선형 파랑변형을 잘 보여주고 있으며, 이러한 파랑변형과 해운대 지형특성이 반영되어 시간에 따라 발달하는 파랑유도 연안흐름 양상을 잘 보여준다. 수치모의 결과로 부터 이안류는 연안방향으로 상대적으로 수심이 깊은 곳에서 그리고 파고가 낮은 곳에서 이안류가 돌발적으로 발생 혹은 증폭될 수 있음을 확인하였다.

Keywords

References

  1. 김인철, 이주용, 이정렬 (2010). 해운대 해수욕장의 이안류 발 생기구 및 수치모의. 한국해안해양공학회논문집, 23(1), 70-78.
  2. 부산광역시 해운대구 (2009). 해운대해수욕장 연안정비사업 기본설계용역 보고서 (제6권 수치모형실험, 제7권 수리모형실험).
  3. 윤성범, 배재석, 박원경, 최준우 (2010). 해운대 이안류 발생 역학과 수치모의 기법 분석. 한국해안해양공학회 학술발표논문집, 19, 121-124.
  4. Bowen, A. (1969). Rip currents 1. Theoretical investigations. J. Geophys. Res., 74(23), 5479-5490. https://doi.org/10.1029/JC074i023p05479
  5. Bowen, A. and Inman, D. (1969). Rip currents 2. Laboratory and field observations. J. Geophys. Res., 74 (C3), 5479-5490. https://doi.org/10.1029/JC074i023p05479
  6. Chen, Q., Dalrymple, R., Kirby, J., Kennedy, A. and Haller, M. (1999). Boussinesq modelling of a rip current system. J. Geophys. Res., 104, 20617-20637. https://doi.org/10.1029/1999JC900154
  7. Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A. and Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup. II: 2d. J. Wtrwy., Port, Coast. and Ocean Eng., 126 (1), 48-56. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
  8. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003). Boussinesq modeling of longshore current. J. of Geophys. Res., 108(C11), 26-1-26-18.
  9. Choi, J., Lim, C.H., Lee, J.I. and Yoon, S.B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Engineering, 56, 297-312. https://doi.org/10.1016/j.coastaleng.2008.09.002
  10. Choi, J. and Yoon, S.B. (2011). Numerical simulation of nearshore circulation on field topography in a random wave environment. Coastal Engineering (in press).
  11. Dalrymple, R.A. (1975). A mechanism for rip current generation on an open coast. J. Geophys. Res., 80, 3485-3487. https://doi.org/10.1029/JC080i024p03485
  12. Dalrymple, R.A. (1978). Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, 1414-1427.
  13. Dalrymple, R.A. and Lozano, C. (1978). Wave current interaction models for rip currents. J. Geophys. Res., 83 (C12), 6063. https://doi.org/10.1029/JC083iC12p06063
  14. Dronen, N., Karunarathna, H., Fredsoe, J., Sumer, B.M. and Deigaard R. (2002). An experimental study of rip channel flow. Coast. Eng., 45, 223-238. https://doi.org/10.1016/S0378-3839(02)00035-2
  15. Haas, K., Svendsen, I., Haller, M. and Zhao, Q. (2003). Quasithree- dimensional modeling of rip current systems. J. Geophys. Res., 108 (C7), 3217. https://doi.org/10.1029/2002JC001355
  16. Haller, M., Dalrymple, R. and Svendsen, I. (2002). Experimental study of nearshore dynamics on a barred beach with rip channels. J. Geophys. Res., 107 (C6), doi:10.1029/2001JC000955.
  17. Hammack, J., Scheffner, N. and Segur, H. (1991). A note on the generation and narrowness of periodic rip currents. J. Geophys. Res., 96 (C3), 4909-4914. https://doi.org/10.1029/90JC02304
  18. Johnson, D. and Pattiaratchi, C. (2006). Boussinesq modelling of transient rip currents. Coastal Engineering, 53, 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  19. MacMahan, J.H., Reniers, A.J.H.M., Thornton, E.B. and Stanton, T.P. (2004). Infragravity rip current pulsations. J. Geophys. Res., 109, C01033.
  20. MacMahan, J.H., Reniers, A.J.H.M., Thornton, E.B. and Stanton, T.P. (2004). Surf zone eddies coupled with rip current morphology. J. Geophys. Res., 109, C07004.
  21. Noda, E.K. (1974). Wave induced nearshore circulation. J. Geophys. Res., 79 (1974), 4097-4106. https://doi.org/10.1029/JC079i027p04097
  22. Shepard, F.P. (1936). Undertow, rip tide or "rip current," Science, 21, pp. 181-182.
  23. Tang, E.S. and Dalrymple, R.A. (1989). Nearshore circulation: rip currents and wave groups. Advances in Coastal and Ocean Engineering. Plenum Press, New York, 205-230.
  24. Wei, G., Kirby, J., Grilli, S.T. and Subraymanya, R. (1995). A fully non-linear Boussinesq model for surface waves: I. Highly non-linear, unsteady waves. J. Fluid Mech., 294, 71-92. https://doi.org/10.1017/S0022112095002813
  25. Wei, G., Kirby, J. and Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method. Coast. Eng., 36, 271-299. https://doi.org/10.1016/S0378-3839(99)00009-5
  26. Yu, J. and Slinn, D. (2003). Effects of wave-current interaction on rip currents. J. Geophys. Res., 108 (C3), 3088, doi:10.1029/ 2001JC001105.

Cited by

  1. Rip Current Sensitive Analysis Using Rose Diagram for Wave-Induced Current Vectors at Haeundae Beach, Korea vol.30, pp.4, 2016, https://doi.org/10.5574/KSOE.2016.30.4.320
  2. Numerical Study on a Dominant Mechanism of Rip Current at Haeundae Beach: Honeycomb Pattern of Waves vol.32, pp.5B, 2012, https://doi.org/10.12652/Ksce.2012.32.5B.321
  3. Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation vol.46, pp.2, 2013, https://doi.org/10.3741/JKWRA.2013.46.2.205
  4. Analysis of Hydraulic Characteristic in Surf Zone using the SWASH Model during Typhoon NAKRI(1412) in Haeundae Beach vol.21, pp.5, 2015, https://doi.org/10.7837/kosomes.2015.21.5.591
  5. Characteristics of Wave-induced Currents using the SWASH Model in Haeundae Beach vol.27, pp.6, 2015, https://doi.org/10.9765/KSCOE.2015.27.6.382
  6. Numerical Simulations of Rip Currents Under Phase-Resolved Directional Random Wave Conditions vol.27, pp.4, 2015, https://doi.org/10.9765/KSCOE.2015.27.4.238
  7. Study of Rip Current Warning Index Function according to Real-time Observations at Haeundae Beach in 2012 vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1191