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SOME FIXED POINT THEOREM USING COMMON
PROPERTY(E.A.) IN INTUITIONISTIC FUZZY METRIC SPACE

Jong Seo Park

Abstract. In this paper, we define the intuitionistic fuzzy contraction, and obtain
some fixed point theorem using common property(E.A.) and weakly compatibility
in intuitionistic fuzzy metric space.

1. Introduction

George and Veeramani [1] modified the concept of fuzzy metric space introduced
by Kramosil and Michalek [4] with a view to obtain a Hausdorff topology on fuzzy
metric spaces, and this has recently found very fruitful applications in quantum
particle physics. In recent years, many authors have proved fixed point theorems in
fuzzy metric spaces, and we observed some common fixed point theorems in fuzzy
metric space which improved many known results ([2], [9], [11] etc).

Sessa[10] introduced the notion of weakly commuting mappings which was further
enlarged by Jungck[3] by defining compatible mapping in fuzzy metric space. Also,
Park[6] studied some properties for compatible map in intuitionistic fuzzy metric
space.

In this paper, we define the intuitionistic fuzzy contraction, and obtain some fixed
point theorem using common property(E.A.) and weakly compatibility in intuition-
istic fuzzy metric space.

2. Preliminaries

We recall some definitions, properties and known results in the intuitionistic fuzzy
metric space as following :
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Let us recall (see [8]) that a continuous t−norm is a operation ∗ : [0, 1]× [0, 1] →
[0, 1] which satisfies the following conditions: (a)∗ is commutative and associative,
(b)∗ is continuous, (c)a ∗ 1 = a for all a ∈ [0, 1], (d)a ∗ b ≤ c ∗ d whenever a ≤ c

and b ≤ d (a, b, c, d ∈ [0, 1]). Also, a continuous t−conorm is a operation ¦ :
[0, 1] × [0, 1] → [0, 1] which satisfies the following conditions: (a)¦ is commutative
and associative, (b)¦ is continuous, (c)a ¦ 0 = a for all a ∈ [0, 1], (d)a ¦ b ≥ c ¦ d

whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Definition 2.1 ([5]). The 5−tuple (X, M,N, ∗, ¦) is said to be an intuitionistic fuzzy
metric space if X is an arbitrary set, ∗ is a continuous t−norm, ¦ is a continuous
t−conorm and M,N are fuzzy sets on X2×(0,∞) satisfying the following conditions;
for all x, y, z ∈ X, such that

(a)M(x, y, t) > 0,
(b)M(x, y, t) = 1 if and only if x = y,
(c)M(x, y, t) = M(y, x, t),
(d)M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
(e)M(x, y, ·) : (0,∞) → (0, 1] is continuous,
(f)N(x, y, t) > 0,
(g)N(x, y, t) = 0 if and only if x = y,
(h)N(x, y, t) = N(y, x, t),
(i)N(x, y, t) ¦N(y, z, s) ≥ N(x, z, t + s),
(j)N(x, y, ·) : (0,∞) → (0, 1] is continuous.

Note that (M,N) is called an intuitionistic fuzzy metric on X. The functions
M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-nearness
between x and y with respect to t, respectively.

Definition 2.2 ([7]). Let X be an intuitionistic fuzzy metric space.
(a) {xn} is said to be convergent to a point x ∈ X by limn→∞ xn = x if

limn→∞M(xn, x, t) = 1, limn→∞N(xn, x, t) = 0 for all t > 0.
(b) {xn} is called a Cauchy sequence if

lim
n→∞M(xn+p, xn, t) = 1, lim

n→∞N(xn+p, xn, t) = 0

for all t > 0 and p > 0.
(c) X is complete if every Cauchy sequence converges in X.

Definition 2.3 ([6]). A pair of self mappings (f, g) defined on an intuitionistic
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fuzzy metric space X is said to be compatible (or asymptotically commuting) if for
all t > 0

lim
n→∞M(fgxn, gfxn, t) = 1, lim

n→∞N(fgxn, gfxn, t) = 0

where {xn} ⊂ X such that limn→∞ fxn = limn→∞ gxn = z for some z ∈ X.
Also, the pair (f, g) is called non-compatible, if there exists a sequence {xn} ⊂ X

such that limn→∞ fxn = limn→∞ gxn = z, but either limn→∞M(fgxn, gfxn, t) 6=
1, limn→∞N(fgxn, gfxn, t) 6= 0 or the limit does not exists.

Definition 2.4. A pair of self mappings (f, g) defined on an intuitionistic fuzzy
metric space X is said to satisfy the property(E.A.) if there exists a sequence {xn} ⊂
X such that limn→∞ fxn = limn→∞ gxn = z for some z ∈ X.

Definition 2.5. Two pairs of self mappings (A,S) and (B, T ) defined on an intu-
itionistic fuzzy metric space X are said to share common property(E.A.) if there exist
sequences {xn}, {yn} ⊂ X such that limn→∞Axn = limn→∞ Sxn = limn→∞Byn =
limn→∞ Tyn = z for some z ∈ X.

Definition 2.6 ([6]). Two self mappings f and g on an intuitionistic fuzzy metric
space X are called weakly compatible if they commute at their point of coincidence.
That is, fx = gx implies fgx = gfx.

Definition 2.7. Let X be an intuitionistic fuzzy metric space and (f, g) be a pair
of maps from X into X. The map f is called an intuitionistic fuzzy contraction with
respect to g if there exists an upper semicontinuous function r : [0,∞) → [0,∞)
with r(τ) < τ for every τ > 0 such that

1
M(fx, fy, t)

− 1 ≤ r

(
1

m(f, g, x, y, t)
− 1

)
,

N(fx, fy, t) ≤ r(n(f, g, x, y, t))

for every x, y ∈ X and each t > 0, where

m(f, g, x, y, t) = min{M(gx, gy, t),M(fx, gx, t),M(fy, gy, t)},
n(f, g, x, y, t) = max{N(gx, gy, t), N(fx, gx, t), N(fy, gy, t)}.

Definition 2.8. Let A,B, S and T be four self mappings of an intuitionistic fuzzy
metric space X. Then the mappings A and B are called a generalized intuitionistic
fuzzy contraction with respect to S and T if there exists an upper semicontinuous
function r : [0,∞) → [0,∞) with r(τ) < τ for every τ > 0 such that for each
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x, y ∈ X and t > 0,
1

M(Ax,By, t)
− 1

≤ r(
1

min{M(Sx, Ty, t), M(Ax, Sx, t),M(By, Ty, t)} − 1),

N(Ax,By, t)(2.1)

≤ r(max{N(Sx, Ty, t), N(Ax, Sx, t), N(By, Ty, t)}).

3. Main Result

In this part, we prove some common fixed point theorem for four mappings
satisfying weak compatible using property(E.A.).

Theorem 3.1. Let A,B, S and T be four self mappings of an intuitionistic fuzzy
metric space X such that the mappings A and B are generalized intuitionistic fuzzy
contraction with respect to mappings S and T . Suppose that the pairs (A,S) and
(B, T ) share the common property(E.A.) and S(X), T (X) are closed subsets of X.
Then the pair (A,S) as well as (B, T ) have a point of coincidence each. Furthermore,
if the pairs (A,S) and (B, T ) are weakly compatible, then A,B, S and T have a
unique common fixed point.

Proof. By assumption, since (A,S) and (B, T ) share the common property(E.A.),
there exist sequences {xn}, {yn} ⊂ X such that for some z ∈ X, limn→∞Axn =
limn→∞ Sxn = limn→∞Byn = limn→∞ Tyn = z. Since S(X) is a closed subset of
X, limn→∞ Sxn = z ∈ S(X). Therefore, there exist a point u ∈ X such that Su = z.

Now, we prove Su = Au. If not, then by (2.1), we have
1

M(Au,Byn, t)
− 1

≤ r

(
1

min{M(Su, Tyn, t),M(Au, Su, t),M(Byn, T yn, t)} − 1
)

,

N(Au,Byn, t)

≤ r(max{N(Su, Tyn, t), N(Au, Su, t), N(Byn, T yn, t)}).
Hence for every t > 0, as n →∞,

1
M(Au, z, t)

− 1 ≤ r

(
1

min{M(Au, z, t)} − 1
)

<
1

M(Au, z, t)
− 1,

N(Au, z, t) ≤ r(max{N(Au, z, t)}) < N(Au, z).
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This is a contradiction, and hence Su = Au. Therefore u is a coincidence point
of the pair (A,S).

If T (X) is a closed subset of X, then limn→∞ Tyn = z ∈ T (X). That is, there
exist a point v ∈ X such that Tv = z. Now, we prove Tv = Bv. If not, then we
have

1
M(Ax, Bv, t)

− 1

≤ r

(
1

min{M(Sxn, T v, t),M(Axn, Sxn, t),M(Bv, Tv, t)} − 1
)

,

N(Axn, Bv, t)

≤ r(max{N(Sxn, T v, t), N(Axn, Sxn, t), N(Bv, Tv, t)}).

Hence for every t > 0 as n →∞,

1
M(z, Bv, t)

− 1 ≤ r

(
1

min{M(z, Bv, t)} − 1
)

<
1

M(z,Bv, t)
− 1,

N(z,Bv, t) ≤ r(max{N(z, Bv, t)}) < N(z, Bv, t).

This is a contradiction, and hence Bv = Tv. Therefore v is a coincidence point of
the pair (B, T ). Since (A,S) is weakly compatible and Au = Su, we have Az =
ASu = SAu = Sz.

Suppose that Az 6= z, then by (2.1), we have for all t > 0,

1
M(Az, Bv, t)

− 1 ≤ r

(
1

min{M(Az, Bv, t)} − 1
)

<
1

M(Az,Bv, t)
− 1,

N(Az,Bv, t) ≤ r(max{N(Az, Bv, t)}) < N(Az, Bv, t).

Hence Az = Bv = z from contradiction. By same method for the pair (B, T ), we get
Bz = Tv = z. Therefore z is a common fixed point of the pairs (A,S) and (B, T ).

Uniqueness of the common fixed point z is an easy consequence of (2.1). This
completes the proof. ¤

Example 3.2. Let X = [2, 20] and X be an intuitionistic fuzzy metric space defined
M,N as M(x, y, t) = t

t+d(x,y) , N(x, y, t) = d(x,y)
t+d(x,y) for all x, y ∈ X and t > 0. Define

A,B, S, T : X → X by

Ax =

{
2 if x = 2,

3 if x > 2,
Bx =





2 if x = 2,

6 if 2 < x ≤ 5,

3 if x > 5,
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Sx =

{
2 if x = 2,

6 if x > 2,
Tx =





2 if x = 2,

18 if 2 < x ≤ 5,

12 if x > 5,

Then A,B, S and T satisfy all conditions of Theorem 3.1 with r(τ) = kτ , where
k ∈ (4

9 , 1). Hence 2 is a unique common fixed point of A,B, S and T which also
remains a point of discontinuity.
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