DOI QR코드

DOI QR Code

SUFFICIENT CONDITIONS FOR THE INTERSECTION PROPERTY IN GENERALIZED LI$\acute{E}$NARD SYSTEMS

  • 투고 : 2011.03.29
  • 심사 : 2011.08.08
  • 발행 : 2011.08.31

초록

Some new results on the intersection property of all nonzero solutions of a class of planar systems of Li$\acute{e}$nard type with vertical isoclines are obtained. The results of this paper generalize some previous results on this field.

키워드

참고문헌

  1. J.G. Wendel: On a Van Der Pol equation with odd coefficients. J. London Math. Soc. 24 (1949), 65-67. https://doi.org/10.1112/jlms/s1-24.1.65
  2. A.F. Filippov: A sufficient condition for the existence of a stable limit cycle of second order equation. Mat. Sb. (1952) 30, no. 72, 171-180.
  3. Z. Opial: Sur un theoreme de A.Filippoff. Ann. Polon. Math. 5 (1958), 67-75.
  4. V.V. Nemyckii & V.V. Stepanov: Qualitative Theory of Ordinary Differential Equations. English ed, Princeton Univ. Press, Princeton, NJ, 1960.
  5. T. Hara & T. Yoneyama: On the global center of generalized Lienard equation and its applications to stability problems. Funkcial Ekvac. 28 (1985), 171-192.
  6. G. Villari & F. Zanolin: On a dynamical system in the Lienard plane. Necessary and sufficient conditions for the intersection with the vertical isocline and applications. Funkcial Ekvac. 33 (1990), 19-38.
  7. J. Sugie: The global center for the Lienard system. Nonlinear Analysis 17(1991), 333-345. https://doi.org/10.1016/0362-546X(91)90075-C
  8. S. Yu: On the center of Lienard system. J. Diff. Equa. 102 (1993), 53-61. https://doi.org/10.1006/jdeq.1993.1021
  9. J. Sugie & T. Hara: Classification of global phase portraits of a system of Lienard type. J. Math. Anal. Appl. 193 (1995), 264-281. https://doi.org/10.1006/jmaa.1995.1234
  10. J. Sugie, D.L. Chen & H. Matsunaga: On global asymptotic stability of systems of Lienard type. J. Math. Anal. Appl. 219 (1998), 140-164. https://doi.org/10.1006/jmaa.1997.5773
  11. J. Sugie: Homoclinic orbits in generalized Lienard systems. J. Math. Anal. Appl. 309 (2005), 211-226. https://doi.org/10.1016/j.jmaa.2005.01.023
  12. A. Aghajani & A. Moradifam: Some sufficient conditions for the intersection with the vertical isocline in the Lienard plane. Appl. Math. Letters 19 (2006), 491-497. https://doi.org/10.1016/j.aml.2005.07.005
  13. M. Hesaaraki & A. Moradifam: Intersection with the vertical isocline in the generalized Lienard equations. J. Math. Anal. Appl. 334 (2007), 787-795. https://doi.org/10.1016/j.jmaa.2007.01.015
  14. A. Aghajani & A. Moradifam: On the homoclinic orbits of the generalized Lienard equations. Appl. Math. Letters. 20 (2007), 345-351. https://doi.org/10.1016/j.aml.2006.05.004
  15. J. Sugie, A. Kono & A. Yamaguchi: Existence of limit cycles for Lienard-type systems with p-Laplacian. Nonlinear Differ. Equ. Appl. 14 (2007), 91-110. https://doi.org/10.1007/s00030-006-4045-5