DOI QR코드

DOI QR Code

ON L-FUZZY ${\omega}$-BASICALLY DISCONNECTED SPACES

  • Sudha, M. (Department of Mathematics Sri Sarada College for Women) ;
  • Roja, E. (Department of Mathematics Sri Sarada College for Women) ;
  • Uma, M.K. (Department of Mathematics Sri Sarada College for Women)
  • Received : 2009.09.16
  • Accepted : 2011.02.14
  • Published : 2011.05.31

Abstract

In this paper L-fuzzy ${\omega}$-closed and L-fuzzy ${\omega}$-open sets are introduced. Also a new class of L-fuzzy topological space called L-fuzzy ${\omega}$-basically disconnected space is introduced. Several characterizations and some interesting properties are also given.

Keywords

References

  1. Balasubramanian. G., Maximal fuzzy topologies, KYBERNETIKA 31 (1995), 459-464.
  2. Birkhoff. G., Lattice theory, Amer. Math. Soc. Colloq. Pubil. Vol. 25, Amer.Math. Soc., Providence, R.I., 1973.
  3. Chang. C. L., Fuzzy topological spaces, J.Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  4. Ganter. T. E., Stein lage R. C. and Warren. R. H., Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547-562. https://doi.org/10.1016/0022-247X(78)90148-8
  5. Hutton. B., Normality in fuzzy topological spaces, J. Math. Anal. Appl. 43 (1973), 734-742. https://doi.org/10.1016/0022-247X(73)90288-6
  6. Hoche. V., Characterization of L-topologies by L-valued neighbourhoods, in [5], 389-432.
  7. Rodabaugh. S. E., Normality and L-Fuzzy unit interval, Abstracts. Amer. Math. Soc. 1 (1980), 126.
  8. Rodabaugh. S. E., Fuzzy addition in the L-fuzzy real line, Fuzzy Sets and Systems 8 (1982), 39-52. https://doi.org/10.1016/0165-0114(82)90028-8
  9. Sheik John. M., A study on generalizations of closed sets and continuous maps in topological spaces, PH.D. Thesis, Bharathiar University, Coimbatore, 2002.
  10. Smets. S. P., The degree of belief in a fuzzy event, Information Sciences 25 (1981), 1-19. https://doi.org/10.1016/0020-0255(81)90008-6
  11. Sugeno. M., An introductory survey of fuzzy control, Information Sciences 36 (1958), 59-83.
  12. Thangaraj. G. and Balasubramanian. G., On fuzzy basically disconnected spaces, J. Fuzzy. Math. 9 (2001), 103-110.
  13. Tomaz Kubiak, L-Fuzzy normal spaces and Tietze extension theorem, J. Math. Anal. Appl. 25 (1987), 141-153.
  14. Zadeh. L. A., Fuzzy Sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X