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SOME PROPERTIES OF MAGIC CUBES

Yangkok Kim and Jaechil Yoo*

Abstract. In this paper we introduce an algorithm to construct an in-
finite family of magic cubes and investigate properties of magic cubes,

which extend the results in [6].

1. Introduction

The study of magic squares has a long history([4]). Some remarkable prop-
erties of magic squares have been shown and some generalizations have drawn
on interesting mathematics([1] and [3]). In [2] an operation on the set of all
magic squares was introduced which makes the set of magic squares into a free
monoid. In [6] a product on the set of all matrices was introduced and an al-
gorithm was given to construct an infinite family of magic squares. Under the
product operation, it was shown that the set of all magic squares formed a free
monoid as in [2] and moreover the product preserved the symmetrical property
introduced in [5] to give infinitely many square-palindromic magic squares. In
this article, we extend the results in [6] to construct an infinite family of magic
cubes and investigate properties of magic cubes.

2. Cube algebra

An n-cube is an n-dimensional array of real numbers. When n = 2, we have
usual matrices. For an n-cube A, every component can be written by an n-ary
expression a(i1,i2,...,in) or A(i1,i2,...,in), and we denote MA = max{a(i1,i2,...,in)}
and mA = min{a(i1,i2,...,in)}. When 1 ≤ i` ≤ s` for 1 ≤ ` ≤ n, we call A an

s1 × s2 × · · · × sn n-cube and denote it by A =
[
a(i1,i2,...,in)

]
1≤i`≤s`

or simply

A =
[
a(i1,i2,...,in)

]
. In particular, if s1 = · · · = sn = 1, we simply write [r] for

a 1 × · · · × 1 n-cube whose unique component is r. If s1 = s2 = · · · = sn = s,
an s1 × s2 × · · · × sn n-cube A is called an n-cube of degree deg(A) = s.
We now define the equality of two n-cubes in a natural way: two n-cubes[
a(i1,i2,...,in)

]
1≤i`≤s`

and
[
b(i1,i2,...,in)

]
1≤i`≤t`

are equal if s` = t` for all 1 ≤ ` ≤
n and a(i1,i2,...,in) = b(i1,i2,...,in) for all i1, i2, . . . , in. An n-cube obtained from
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an n-cube A by fixing some variables of i1, i2, . . . , in is called an n-subcube of
A. With this notation we also express an n-cube A =

[
a(i1,i2,...,in)

]
by writing

sn n-subcubes of A side by side, namely,

A :
[
a(i1,i2,...,in−1,1)

] [
a(i1,i2,...,in−1,2)

]
· · ·

[
a(i1,i2,...,in−1,sn)

]
.

By Ms1×···×sn we denote the set of all s1 × s2 × · · · × sn n-cubes. It then can
be easily shown thatMs1×···×sn is a real vector space with vector addition and
scalar multiplication defined below; for A =

[
a(i1,i2,...,in)

]
, B =

[
b(j1,j2,...,jn)

]
∈

Ms1×···×sn , and k ∈ R,
kA = [ka(i1,i2,...,in)]

and

A+B = [γ(i1,i2,...,in)]

where

γ(i1,i2,...,in) = a(i1,i2,...,in) + b(i1,i2,...,in).

We now define a product on the set of all n-cubes as follows: for two n-cubes
A = [a(i1,i2,...,in)] ∈ Ms1×···×sn and B = [b(i1,i2,...,in)] ∈ Mt1×···×tn , the prod-
uct A ∗B of A and B is an s1t1 × · · · × sntn n-cube defined by

A ∗B = [C(i1,i2,...,in−1,1)]
[
C(i1,i2,...,in−1,2)

]
· · ·

[
C(i1,i2,...,in−1,tn)

]
where 1 ≤ i` ≤ t` for all ` = 1, 2, . . . , n−1 and C(i1,i2,...,in−1,k) is an s1×· · ·×sn
n-cube defined by

C(i1,i2,...,in−1,k) = (t1t2 · · · tn)A+ b(i1,i2,...,in−1,k)1s1×···×sn (1)

and 1s1×···×sn is the s1 × s2 × · · · × sn n-cube of all ones. Moreover under
modulo t1t2 · · · tn,

A ∗B = [b(i1,i2,...,in−1,1)1s1×···×sn ]
[
b(i1,i2,...,in−1,2)1s1×···×sn

]
· · ·

[
b(i1,i2,...,in−1,tn)1s1×···×sn

]
.

For example, we consider two 3-cubes A and B of order 3 and 4

A :

1 15 26
17 19 6
24 8 10

23 7 12
3 14 25

16 21 5

18 20 4
22 9 11
2 13 27

and

B :

1 63 62 4
60 6 7 57
56 10 11 53
13 51 50 16

48 18 19 45
21 43 42 24
25 39 38 28
36 30 31 33

32 34 35 29
37 27 26 40
41 23 22 44
20 46 47 17

49 15 14 52
12 54 55 9
8 58 59 5

61 3 2 64

.
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Then

A ∗B :

C(1,1,1) · · · C(1,4,1)

...
. . .

...
C(4,1,1) · · · C(4,4,1)

C(1,1,2) · · · C(1,4,2)

...
. . .

...
C(4,1,2) · · · C(4,4,2)

C(1,1,3) · · · C(1,4,3)

...
. . .

...
C(4,1,3) · · · C(4,4,3)

C(1,1,4) · · · C(1,4,4)

...
. . .

...
C(4,1,4) · · · C(4,4,4)

.

We do find C(4,1,1) = 4 · 4 · 4A+ b(4,1,1)13×3×3. We note that

64A :

64 960 1664
1088 1216 384
1536 512 640

1472 448 768
192 896 1600

1024 1344 320

1152 1280 256
1408 576 704
128 832 1728

and

b(4,1,1)13×3×3 = 13 · 13×3×3 :

13 13 13
13 13 13
13 13 13

13 13 13
13 13 13
13 13 13

13 13 13
13 13 13
13 13 13

.

Hence

C(4,1,1) :

77 973 1677
1101 1229 397
1549 525 653

1485 461 781
205 909 1613

1037 1357 333

1165 1293 269
1421 589 717
141 845 1741

.

We note that under modulo 64,

A ∗B :

1 · 13 63 · 13 62 · 13 4 · 13

60 · 13 6 · 13 7 · 13 57 · 13

56 · 13 10 · 13 11 · 13 53 · 13

13 · 13 51 · 13 50 · 13 16 · 13

48 · 13 18 · 13 19 · 13 45 · 13

21 · 13 43 · 13 42 · 13 24 · 13

25 · 13 39 · 13 38 · 13 28 · 13

36 · 13 30 · 13 31 · 13 33 · 13

32 · 13 34 · 13 35 · 13 29 · 13

37 · 13 27 · 13 26 · 13 40 · 13

41 · 13 23 · 13 22 · 13 44 · 13

20 · 13 46 · 13 47 · 13 17 · 13

49 · 13 15 · 13 14 · 13 52 · 13

12 · 13 54 · 13 55 · 13 9 · 13

8 · 13 58 · 13 59 · 13 5 · 13

61 · 13 3 · 13 2 · 13 64 · 13

where 13 = 13×3×3.

3. Results

Lemma 3.1. For two n-cubes A ∈ Ms1×···×sn and B ∈ Mt1×···×tn , let α` =
(j` − 1)s` + i` with 1 ≤ ` ≤ n, 1 ≤ i` ≤ s`, 1 ≤ j` ≤ t`. Then

(A ∗B)(α1,α2,...,αn) = t1t2 · · · tnA(i1,i2,...,in) +B(j1,j2,...,jn).

Proof. From the definition of a product, it is clear. �
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Corollary 3.2. M is left and right cancellative with respect to ∗. That is,
A ∗ B = A ∗ C implies B = C, and B ∗ A = C ∗ A implies B = C for n-cubes
A,B and C.

Proof. Clear from Lemma 3.1. �

For n-cubes A ∈Ms1×···×sn , B ∈Mt1×···×tn and C ∈Mu1×···×un
, let

α` = (k` − 1)s`t` + (j` − 1)s` + i`

where 1 ≤ ` ≤ n, 1 ≤ i` ≤ s`, 1 ≤ j` ≤ t`, 1 ≤ k` ≤ u`. Then

(A ∗ (B ∗ C))(α1,α2,...,αn)

= t1t2 · · · tnu1u2 · · ·unA(i1,i2,...,in)

+(B ∗ C)((k1−1)t1+j1,(k2−1)t2+j2,...,(kn−1)tn+jn)

= t1t2 · · · tnu1u2 · · ·unA(i1,i2,...,in) + u1u2 · · ·unB(j1,j2,...,jn) + C(k1,k2,...,kn)

and

((A ∗B) ∗ C)(α1,α2,...,αn)

= u1u2 · · ·un(A ∗B)((j1−1)s1+i1,(j2−1)s2+i2,...,(jn−1)sn+in) + C(k1,k2,...,kn)

= u1u2 · · ·un
(
t1t2 · · · tnA(i1,i2,...,in) +B(j1,j2,...,jn)

)
+ C(k1,k2,...,kn)

Lemma 3.3. For n-cubes A,B and C, A ∗ (B ∗ C) = (A ∗ B) ∗ C. That is, ∗
is associative.

We note that for an n-cube A ∈Ms1×···×sn , [r]∗A = s1s2 · · · snr1s1×···×sn +
A and A ∗ [r] = A + r1s1×···×sn for all r. In particular, [0] is the identity. For
an n-cube A and a positive integer m, we write A0 = [0] and Am = Am−1 ∗A.

Corollary 3.4. The setM of all cubes of integers is a monoid with respect to
the operation ∗.

We recall that for a, b in a monoid M with an operation ◦, we say that a
divides b if there exists an element x in M such that a ◦ x = b. The elements
which divide the identity are called the units of M. For a, b in M, a and b
are associated if and only if there exists a unit u such that a ◦ u = b. If q is
a non-unit, we say that q is an irreducible element if q cannot be written as a
product of two non-units. We note that for every r, [r] is a unit and conversely
every unit inM is of the form [r]. In fact [r] ∗ [−r] = [−r] ∗ [r] = [0]. Moreover
if A and B in M are associated, then A = B + k1m1×···×mn

for some integer
k and mi.

Definition 1. An n-cube of integers is called magic if all components are
distinct, and the average of the numbers in each orthogonal or in each of the
2n−1 great diagonals is equal to the average of the numbers in the whole n-cube.
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From the definition a magic n-cube of degree s is an n-cube A =
[
a(i1,i2,...,in)

]
of integers such that MA−mA = sn− 1. When A is a magic n-cube, we define
||A|| by the sum of the numbers in each orthogonal. For example,

A :

1 15 26
17 19 6
24 8 10

23 7 12
3 14 25

16 21 5

18 20 4
22 9 11
2 13 27

is a magic 3-cube of degree 3 with ||A|| = 42,mA = 1, and MA = 27. We
also note that for two magic n-cubes A and B of degree s and t respectively,

mA∗B = tnmA + mB , MA∗B = tnMA + MB , and mAk = ( s
nk−1
sn−1 )mA, MAk =

( s
nk−1
sn−1 )MA for a positive integer k.

Theorem 3.5. If A and B are magic n-cubes of degree s and t respectively,
then A∗B is a magic n-cube of degree st. Moreover ||A∗B|| = tn+1||A||+s||B||.

Proof. Let A =
[
a(i1,i2,...,in)

]
and B =

[
b(j1,j2,...,jn)

]
be magic n-cubes of degree

s, t respectively. Then by definition A∗B = [γ(i1,i2,...,in)] is an n-cube of degree

st. We first note that for each fixed i2, . . . , in, the value
∑st
k=1 γ(k,i2,...,in) is

independent of each fixed values i2, . . . , in as follows:

st∑
k=1

γ(k,i2,...,in) = t · tn
s∑
`=1

a(`,i2,...,in) + s

t∑
`=1

b(`,j2,...,jn)

= tn+1||A||+ s||B||.

Similarly we can get the same value for orthogonals and great-diagonals of
A ∗B. Hence A ∗B is a magic n-cube and

||A ∗B|| = tn+1||A||+ s||B||.

�

We note that if A and B are magic cubes, then each C(i1,i2,...,in) in (1) is
a magic cube. Let MC be the set of all magic cubes. Then MC forms a
submonoid of M We now show that MC is free. We first note that the easy
induction on the degree of the magic n-cube shows that every magic n-cube
can be written as a product of irreducible magic n-cubes. Equivalently, the
set of all irreducible magic n-cubes generates the monoid. Hence in order to
show that MC is free, we only have to prove that it is freely generated by its
irreducible elements.

Theorem 3.6. If A and A ∗B are magic n-cubes, then B is a magic n-cube.

Proof. Let deg(A) = s, deg(B) = t, and A ∗ B = [γ(i1,i2,...,in)]. Suppose that

B =
[
b(i1,i2,...,in)

]
is not a magic n-cube. Then without loss of generality we

can assume
∑t
i=1 b(k,i,1,...,1) 6=

∑t
i=1 b(`,i,1,...,1) for some k 6= `. We take α, β
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such that (k − 1)s < α ≤ ks and (`− 1)s < β ≤ `s. Then for α 6= β,

st∑
i=1

γ(α,i,1,...,1) = tn+1||A||+ s

t∑
i=1

b(k,i,1,...,1)

and
st∑
i=1

γ(β,i,1,...,1) = tn+1||A||+ s

t∑
i=1

b(`,i,1,...,1)

which are distinct, a contradiction. �

We also note that if B and A ∗ B are magic n-cubes, then A is a magic
n-cube. In the following lemmas, we let deg(A) = p, deg(B) = q,deg(X) = s,
and deg(Y ) = t and write B = [b(i1,i2,...,in)], Y = [y(i1,i2,...,in)].

Lemma 3.7. If A∗B = X ∗Y for magic n-cubes A,B,X and Y and deg(A) <
deg(X), then deg(A) divides deg(X).

Proof. Suppose not. We consider the following two n-subcubes:

(A ∗B)(i1,i2,1,...,1) =

 C(1,1,1,...,1) · · · C(1,q,1,...,1)

...
. . .

...
C(q,1,1,...,1) · · · C(q,q,1,...,1)


and

(X ∗ Y )(i1,i2,1,...,1) =

 Z(1,1,1,...,1) · · · Z(1,t,1,...,1)

...
. . .

...
Z(t,1,1,...,1) · · · Z(t,t,1,...,1)


where C(i,j,1,...,1) and Z(i,j,1,...,1) are n-cubes of degree p and s respectively.
Then for 1 ≤ i ≤ p,

(Z(1,2,1,...,1))(i,1,1,...,1) = (Z(1,1,1,...,1))(i,1,1,...,1) + α = (C(1,1,1,...,1))(i,1,1,...,1) + α

for some α and

(Z(1,2,1,...,1))(i,1,1,...,1)) = (C(1,1,1,...,1))(i,`,1,...,1)) + β

for some 1 < ` < p and β. Since C(1,1,1,...,1) is a magic cube, we have

p∑
i=1

(C(1,1,1,...,1))(i,1,1,...,1) =

p∑
i=1

(C(1,1,1,...,1))(i,`,1,...,1)

and so α = β. This means (C(1,1,1,...,1))(i,1,1,...,1) = (C(1,1,1,...,1))(i,`,1,...,1), a
contradiction. �

Lemma 3.8. If for magic n-cubes A,B,X and Y, A∗B = X∗Y, then X = A∗E
for some magic cube E.
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Proof. By Lemma 3.7 we write pq = st, pr = s and q = rt. Then we have

Z(1,1,1,...,1) = tnX + y(1,1,1,...,1)1s×s×···×s.

and

Z(1,1,1,...,1) =

 C(1,1,1,...,1) · · · C(1,r,1,...,1)

...
. . .

...
C(r,1,1,...,1) · · · C(r,r,1,...,1)


where C(i,j,1,...,1) = qnA+b(i,j,1,...,1)1p×p×···×p.Hence tnX+y(1,1,1,...,1)1s×s×···×s
= [C(i,j,1,...,1)] and so

tnX = [C(i,j,1,...,1) − y(1,1,1,...,1)1s×s×···×s]
= [qnA+ (b(i,j,1,...,1) − y(1,1,1,...,1))1p×p×···×p]
= [rntnA+ (b(i,j,1,...,1) − y(1,1,1,...,1))1p×p×···×p]

and

X =

[
tnA+

(
b(i,j,1,...,1) − y(1,1,1,...,1)

tn

)
1p×p×···×p

]
= A ∗ E

where E = [e(i,j,1,...,1)] is an n-cube of degree r and

e(i,j,1,...,1) =
b(i,j,1,...,1) − y(1,1,1,...,1)

tn
.

By Lemma 3.6, E is a required magic n-cube. �

From Lemma 3.8, Corollary 3.2 and the remarks above Theorem 3.6 we have
the following theorem.

Theorem 3.9. The monoidMC of all magic n-cubes is a free monoid.

4. Examples of symmetrical magic n-cubes

We recall that a magic square A = [aij ] of degree n is called symmetrical if
the sum of each pair of two opposite entries aij , an+1−i,n+1−j with respect to
the center is 2

n (
∑n
i=1 ai1) . Similarly we define the same concept for the magic

n-cubes.

Definition 2. A magic n-cube A of degree s is called symmetrical if the sum of
each pair of two opposite entriesA(i1,i2,...,in) andA∗(i1,i2,...,in) = A(s+1−i1,s+1−i2,...,s+1−in)

with respect to the center is 2||A||
s .

We note that a magic 3-cube

A :

1 15 26
17 19 6
24 8 10

23 7 12
3 14 25

16 21 5

18 20 4
22 9 11
2 13 27
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is symmetrical and An(n ≥ 2) is also symmetrical. Indeed we have the follow-
ing.

Theorem 4.1. The symmetrical property is preserved by the operation ∗ in
MC. That is, for two symmetrical magic cubes A and B, A∗B is a symmetrical
magic cube.

Proof. Let A and B be symmetrical magic cubes of degree s and t respectively,
and let α` = (j` − 1)s+ i` with 1 ≤ ` ≤ n, 1 ≤ i` ≤ s, 1 ≤ j` ≤ t. Then

(A ∗B)(α1,α2,...,αn) = tnA(i1,i2,...,in) +B(j1,j2,...,jn).

We note that for a pair of two opposite entries (A ∗ B)(α1,α2,...,αn) and (A ∗
B)∗(α1,α2,...,αn)

in A ∗ B, there are two pairs of opposite entries A(i1,i2,...,in),

A∗(i1,i2,...,in) and B(j1,j2,...,jn), B
∗
(j1,j2,...,jn)

in A and B respectively such that

(A ∗B)(α1,α2,...,αn) + (A ∗B)∗(α1,α2,...,αn)

= tnA(i1,i2,...,in) +B(j1,j2,...,jn) + tnA∗(i1,i2,...,in) +B∗(j1,j2,...,jn)

= tn(A(i1,i2,...,in) +A∗(i1,i2,...,in)) + (B(j1,j2,...,jn) +B∗(j1,j2,...,jn)).

Since A and B are symmetrical, we have

(A ∗B)(α1,α2,...,αn) + (A ∗B)∗(α1,α2,...,αn)

=
tn2||A||

s
+

2||B||
t

=
tn+12||A||+ 2s||B||

st

= 2

(
tn+1||A||+ s||B||

st

)
=

2||A ∗B||
st

which completes the proof. �
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