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COMMON FIXED POINT THEOREMS FOR

TWO MAPPINGS IN M-FUZZY METRIC SPACES

Shaban Sedghi∗, Jung Hwa Im, and Nabi Shobe

Abstract. In this paper, we prove some common fixed point theorems

for two nonlinear mappings in complete M-fuzzy metric spaces. Our main

results improved versions of several fixed point theorems in complete fuzzy
metric spaces.

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [27] in 1965.
Since then, to apply this concept in topology and analysis, many authors [9,
17, 19, 24] have expansively developed the theory of fuzzy sets and application.
George and Veeramani [8] and Kramosil and Michalek [11] have introduced the
concept of fuzzy topological spaces induced by fuzzy metric which have very
important applications in quantum particle physics particularly in connections
with both string and E-infinity theory which were given and studied by El-
Naschie [3-6]. Many authors [7, 10, 12, 18, 20, 23] have proved fixed point
theorem in fuzzy (probabilistic) metric spaces. Vasuki [25] obtained the fuzzy
version of common fixed point theorem which had extra conditions. In fact,
Vasuki [25] proved fuzzy common fixed point theorem by a strong definition of
a Cauchy sequence (see Note 3.13 and Definition 3.15 of [8], also [23, 26]).

On the other hand, Dhage [1, 2] introduced the notion of generalized metric
or D-metric spaces and claimed that D-metric convergence defines a Hausdorff
topology and D-metric is sequentially continuous in all the three variables.
Many authors have used these claims in proving fixed point theorems in D-
metric spaces, but, unfortunately, almost all theorems in D-metric spaces are
not valid (see [13-16, 22]).

Recently, Sedghi et al. [21] introduced D∗-metric which is a probable mod-
ification of the definition of D-metric introduced by Dhage [1, 2] and proved
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some basic properties in D∗-metric spaces. Also, using the concept of the D∗-
metrics, they definedM-fuzzy metric space and proved some related fixed point
theorems for some nonlinear mappings in complete M-fuzzy metric spaces.

In this paper, we prove some common fixed point theorems for two nonlinear
mappings in complete M-fuzzy metric spaces. Our main results improved
versions of several fixed point theorems in complete fuzzy metric spaces.

In what follows (X,D∗) will denote a D∗-metric space, N the set of all
natural numbers and R+ the set of all positive real numbers.

Definition 1.1. ([21]) Let X be a nonempty set. A generalized metric (or
D∗-metric) on X is a function: D∗ : X3 −→ R+ that satisfies the following
conditions: for any x, y, z, a ∈ X,

(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}) (symmetry), where p is a permutation

function,
(4) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z).

The pair (X,D∗) is called a generalized metric space (or D∗-metric space.
Some immediate examples of such a function are as follows:

(a) D∗(x, y, z) = max{d(x, y), d(y, z), d(z, x)}.
(b) D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x), where d is the ordinary metric

on X.
(c) If X = Rn, then we define

D∗(x, y, z) = (||x− y||p + ||y − z||p + ||z − x||p)
1
p

for any p ∈ R+.
(d) If X = R+, then we define

D∗(x, y, z) =

{
0, ifx = y = z,

max{x, y, z} otherwise.

In a D∗-metric space (X,D∗), we can prove that D∗(x, x, y) = D∗(x, y, y).
Let (X,D∗) be a D∗-metric space. For any r > 0, define the open ball with

the center x and radius r as follows:

BD∗(x, r) = {y ∈ X : D∗(x, y, y) < r}.

Example 1.2. Let X = R. Denote D∗(x, y, z) = |x− y|+ |y − z|+ |z − x| for
all x, y, z ∈ R. Thus we have

BD∗(1, 2) = {y ∈ R : D∗(1, y, y) < 2}
= {y ∈ R : |y − 1|+ |y − 1| < 2}
= {y ∈ R : |y − 1| < 1}
= (0, 2).

Definition 1.3. ([21]) Let (X,D∗) be a D∗-metric space and A ⊂ X.
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(1) If, for any x ∈ A, there exists r > 0 such that BD∗(x, r) ⊂ A, then A
is called an open subset of X.

(2) A subset A of X is said to be D∗-bounded if there exists r > 0 such
that D∗(x, y, y) < r for all x, y ∈ A.

(3) A sequence {xn} in X is said to be convergent to a point x ∈ X if

D∗(xn, xn, x) = D∗(x, x, xn)→ 0 (n→∞).

That is, for any ε > 0, there exists n0 ∈ N such that

D∗(x, x, xn) < ε, ∀n ≥ n0.
Equivalently, for any ε > 0, there exists n0 ∈ N such that

D∗(x, xn, xm) < ε, ∀n,m ≥ n0.
(4) A sequence {xn} in X is called a Cauchy sequence if, for any ε > 0,

there exits n0 ∈ N such that

D∗(xn, xn, xm) < ε, ∀n,m ≥ n0.
(5) A D∗-metric space (X,D∗) is said to be complete if every Cauchy se-

quence is convergent.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0
such that BD∗(x, r) ⊂ A. Then τ is a topology on X (induced by the D∗-metric
D∗).

Definition 1.4. ([21]) Let (X,D∗) be a D∗-metric space. D∗ is said to be
continuous function on X3 × (0,∞) if

lim
n→∞

D∗(xn, yn, zn) = D∗(x, y, z)

whenever a sequence {(xn, yn, zn)} in X3 converges to a point (x, y, z) ∈ X3,
i.e.,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z.

Remark 1.5. ([21]) (1) Let (X,D∗) be a D∗-metric space. Then D∗ is con-
tinuous function on X3.

(2) If a sequence {xn} in X converges to a point x ∈ X, then the limit x is
unique.

(3) If a sequence {xn} in X is converges to a point x, then {xn} is a Cauchy
sequence in X.

Recently, motivated by the concept of D∗-metrics, Sedghi et al. [21] intro-
duced the concept ofM-fuzzy metric spaces and their properties and, further,
proved some related common fixed theorems for some contractive type map-
pings in M-fuzzy metric spaces.

Definition 1.6. ([21]) A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a
continuous t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
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(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a∗b = ab and a∗b = min(a, b).

Definition 1.7. ([21]) A 3-tuple (X,M, ∗) is called an M-fuzzy metric space
if X is an arbitrary (non-empty) set, ∗ is a continuous t-norm andM is a fuzzy
set on X3× (0,∞) satisfying the following conditions: for all x, y, z, a ∈ X and
t, s > 0,

(1) M(x, y, z, t) > 0,
(2) M(x, y, z, t) = 1 if and only if x = y = z,
(3) M(x, y, z, t) = M(p{x, y, z}, t) (symmetry), where p is a permutation

function,
(4) M(x, y, a, t) ∗M(a, z, z, s) ≤M(x, y, z, t+ s),
(5) M(x, y, z, t) : X3 × (0,∞)→ [0, 1] is continuous with respect to t.

Remark 1.8. Let (X,M, ∗) be anM-fuzzy metric space. Then, for any t > 0
, M(x, x, y, t) =M(x, y, y, t).

Let (X,M, ∗) be an M-fuzzy metric space. For any t > 0, the open ball
BM(x, r, t) with the center x ∈ X and radius 0 < r < 1 is defined by

BM(x, r, t) = {y ∈ X :M(x, y, y, t) > 1− r}.
A subset A of X is called an open set if, for all x ∈ A, there exist t > 0 and

0 < r < 1 such that BM(x, r, t) ⊆ A.

Definition 1.9. ([21]) Let (X,M, ∗) be an M-fuzzy metric space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if
M(x, x, xn, t)→ 1 as n −→∞ for any t > 0.

(2) A sequence {xn} is called a Cauchy sequence if, for any 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that

M(xn, xn, xm, t) > 1− ε, ∀n,m ≥ n0.
(3) An M-fuzzy metric space (X,M, ∗) is said to be complete if every

Cauchy sequence in X is convergent.

Example 1.10. Let X is a nonempty set and D∗ be the D∗-metric on X.
Denote a ∗ b = a · b for all a, b ∈ [0, 1]. For any t ∈]0,∞[, define

M(x, y, z, t) =
t

t+D∗(x, y, z)
, ∀x, y, z ∈ X.

It is easy to see that (X,M, ∗) is a M-fuzzy metric space.

Remark 1.11. Let (X,M, ∗) is a fuzzy metric space. If we define M : X3 ×
(0,∞) −→ [0, 1] by

M(x, y, z, t) =M(x, y, t) ∗M(y, z, t) ∗M(z, x, t), ∀x, y, z ∈ X,
then (X,M, ∗) is an M-fuzzy metric space.
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Lemma 1.12. ([21]) Let (X,M, ∗) be an M-fuzzy metric space. Then, for all
x, y, z ∈ X and t > 0, M(x, y, z, t) is nondecreasing with respect to t.

Definition 1.13. ([21]) Let (X,M, ∗) be anM-fuzzy metric space. M is said
to be continuous function on X3 × (0,∞) if

lim
n→∞

M(xn, yn, zn, tn) =M(x, y, z, t)

whenever a sequence {(xn, yn, zn, tn)} in X3 × (0,∞) converges to a point
(x, y, z, t) ∈ X3 × (0,∞), that is,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z,

lim
n→∞

M(x, y, z, tn) =M(x, y, z, t).

Lemma 1.14. ([21]) Let (X,M, ∗) be an M-fuzzy metric space. Then M is
continuous function on X3 × (0,∞).

Lemma 1.15. ([21]) Let (X,M, ∗) be an M-fuzzy metric space. If we define
Eλ,M : X3 → R+ ∪ {0} by

Eλ,M(x, y, z) = inf{t > 0 : M(x, y, z, t) > 1− λ}, ∀λ ∈ (0, 1),

then we have the following:

(1) For any µ ∈ (0, 1), there exists λ ∈ (0, 1) such that

Eµ,M(x1, x1, xn)

≤ Eλ,M(x1, x1, x2) + Eλ,M(x2, x2, x3) + · · ·+ Eλ,M(xn−1, xn−1, xn)

for any x1, x2, · · · , xn ∈ X.
(2) A sequence {xn} is convergent in anM-fuzzy metric space (X,M, ∗) if

and only if Eλ,M(xn, xn, x)→ 0. Also, the sequence {xn} is a Cauchy
sequence in X if and only if it is a Cauchy sequence with Eλ,M.

Lemma 1.16. ([21]) Let (X,M, ∗) be anM-fuzzy metric space. If there exists
k > 1 such that

M(xn, xn, xn+1, t) ≥M(x0, x0, x1, k
nt), ∀n ≥ 1,

then {xn} is a Cauchy sequence in X.

Definition 1.17. ([7]) We say that an M-fuzzy metric space (X,M, ∗) has
the property (C) if it satisfies the following condition: For some x, y, z ∈ X,

M(x, y, z, t) = C, ∀t > 0, =⇒ C = 1.



278 SHABAN SEDGHI, JUNG HWA IM, AND NABI SHOBE

2. The main results

Now, we are ready to give main results in this paper.

Theorem 2.1. Let (X,M, ∗) be a complete M-fuzzy metric space and S, T be
two self-mappings of X satisfying the following conditions:

(i) there exists a constant k ∈ (0, 1) such that

M(Sx, TSx, Ty, kt) ≥ γ(M(x, Sx, y, t)), ∀x, y ∈ X, (2.1)

or
M(Ty, STy, Sx, kt) ≥ γ(M(y, Ty, x, t)), ∀x, y ∈ X, (2.2)

where γ : [0, 1]→ [0, 1] is a function such that γ(a) ≥ a for all a ∈ [0, 1],
(ii) ST = TS.
If (X,M, ∗) have the property (C), then S and T have a unique common

fixed point in X.

Proof. Let x0 be an arbitrary point in X, define{
x2n+1 = Tx2n,

x2n+2 = Sx2n+1, ∀n ≥ 0.
(2.3)

(1) Let dm(t) = M(xm, xm+1, xm+1, t) for any t > 0. Then, for any even
m = 2n ∈ N , by (2.1) and (2.3), we have

d2n(kt) =M(x2n, x2n+1, x2n+1, kt)

=M(Sx2n−1, Tx2n, Tx2n, kt)

=M(Sx2n−1, TSx2n−1, Tx2n, kt)

≥ γ(M(x2n−1, Sx2n−1, x2n, t))

≥M(x2n−1, x2n, x2n, t)

= d2n−1(t).

Thus d2n(kt) ≥ d2n−1(t) for all even m = 2n ∈ N and t > 0.
Similarly, for any odd m = 2n+ 1 ∈ N , we have also

d2n+1(kt) ≥ d2n(t).

Hence we have

dn(kt) ≥ dn−1(t), ∀n ≥ 1. (2.4)

Thus, by (2.4), we have

M(xn, xn+1, xn+1, t) ≥M(xn−1, xn, xn,
1

k
t) ≥ · · · ≥ M(x0, x1, x1,

1

kn
t).

Therefore, by Lemma 1.16, {xn} is a Cauchy sequence in X and, by the com-
pleteness of X, {xn} converges to a point x in X and so

lim
n→∞

x2n+1 = lim
n→∞

Tx2n = lim
n→∞

Sx2n+1

= lim
n→∞

x2n+2 = x.
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Now, we prove that Tx = x. Replacing x, y by x2n−1, x, respectively, in (i),
we obtain

M(Sx2n−1, TSx2n−1, Tx, kt) ≥ γ(M(x2n−1, Sx2n−1, x, t)),

that is,

M(x2n, x2n+1, Tx, kt) ≥ γ(M(x2n−1, x2n, x, t))

≥M(x2n−1, x2n, x, t).
(2.5)

Letting n −→∞ in (2.5), we have

M(x, x, Tx, kt) ≥M(x, x, x, t) = 1,

which implies that Tx = x, that is, x is a fixed point of T .
Next, we prove that Sx = x. Replacing x, y by x, x2n, respectively, in (2.1),

we obtain

M(Sx, TSx, Tx2n, kt) ≥ γ(M(x, Sx, x2n, t)) ≥M(x, Sx, x2n, t).

By (ii), since TS = ST , we get

M(Sx, Sx, Tx2n, kt) ≥ γ(M(x, Sx, x2n, t)) ≥M(x, Sx, x2n, t). (2.6)

Letting n −→∞ in (2.6), we have

M(Sx, Sx, x, kt) ≥M(x, Sx, x, t)

and hence

M(x, Sx, x, t) ≥M(x, Sx, x,
1

k
t)

≥M(x, Sx, x,
1

k2
t)

· · ·

≥ M(x, Sx, x,
1

kn
t).

On the other hand, it follows from Lemma 1.12 that

M(x, Sx, x, knt) ≤M(x, Sx, x, t).

Hence M(x, Sx, x, t) = C for all t > 0. Since (X,M, ∗) has the property (C),
it follows that C = 1 and so Sx = x, that is, x is a fixed point of S. Therefore,
x is a common fixed point of the self-mappings S and T .
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(2) By using (2.2) and (2.3), let dm(t) =M(xm+1, xm, xm, t) for any t > 0.
Then, for any even m = 2n ∈ N , we have

d2n(kt) =M(x2n+1, x2n, x2n, kt)

=M(Tx2n, Sx2n−1, Sx2n−1, kt)

=M(Tx2n, STx2n−2, Sx2n−1, kt)

≥ γ(M(x2n, Tx2n−2, x2n−1, t))

≥M(x2n, Tx2n−2, x2n−1, t)

≥M(x2n, x2n−1, x2n−1, t)

= d2n−1(t).

Thus d2n(kt) ≥ d2n−1(t) for all even m = 2n ∈ N and t > 0.
Similarly, for any odd m = 2n+ 1 ∈ N , we have also

d2n+1(kt) ≥ d2n(t).

Hence we have

dn(kt) ≥ dn−1(t), ∀n ≥ 1.

The remains of the proof are almost same to the case of (2.1).
Now, to prove the uniqueness, let x′ be another common fixed point of S

and T . Then we have

M(x, x, x′, kt) =M(Sx, TSx, Tx′, kt)

≥ γ(M(x, Sx, x′, t))

≥M(x, x, x′, t),

which implies that

M(x, x, x′, t) ≥M(x, x, x′,
1

k
t)

≥M(x, x, x′,
1

k2
t)

· · ·

≥ M(x, x, x′,
1

kn
t).

On the other hand, it follows from Lemma 2.12 that

M(x, x, x′, t) ≤M(x, x, x′,
1

kn
t)

and hence M(x, x, x′, t) = C for all t > 0. Since (X,M, ∗) has the property
(C), it follows that C = 1, that is, x = x′. Therefore, x is a unique common
fixed point of S and T . This completes the proof. �

By Theorem 2.1, we have the following:



COMMON FIXED POINT THEOREMS FOR TWO MAPPINGS 281

Corollary 2.2. Let (X,M, ∗) be a complete M-fuzzy metric space. Let T be
a mapping from X into itself such that there exists a constant k ∈ (0, 1) such
that

M(Tx, T 2x, Ty, kt) ≥M(x, Tx, y, t), ∀x, y ∈ X.
If (X,M, ∗) have the property (C), then T have a unique fixed point in X.

Proof. By Theorem 2.1, if we set γ(a) = a and S = T , then the conclusion
follows. �

Corollary 2.3. Let (X,M, ∗) be a complete M-fuzzy metric space. Let T be
a mapping from X into itself such that there exists a constant k ∈ (0, 1) such
that

M(Tnx, T 2nx, Tny, kt) ≥M(x, Tnx, y, t)

for all x, y ∈ X and n ≥ 2. If (X,M, ∗) has the property (C), then T have a
unique fixed point in X.

Proof. By Corollary 2.2, Tn have a unique fixed point in X. Thus there exists
x ∈ X such that Tnx = x. Since

Tn+1x = Tn(Tx) = T (Tnx) = Tx,

we have Tx = x. �

Next, by using Lemma 1.16 and the property (C), we can prove the main
results in this paper.

Theorem 2.4. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S and T be mappings from X into itself such that there
exists a constant k ∈ (0, 1) such that

M(Sx, Ty, Ty, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Ty, Ty, t)

+ c(t)M(x, Ty, Ty, αt) + d(t)M(y, Sx, Sx, (2− α)t)

+ e(t)M(x, y, y, t)

(2.7)

for all x, y ∈ X and α ∈ (0, 2), where a, b, c, d, e : [0,∞) −→ [0, 1] are five
functions such that

a(t) + b(t) + c(t) + d(t) + e(t) = 1, ∀t ∈ [0,∞).

Then S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Then there exist x1, x2 ∈ X such
that x1 = Sx0 and x2 = Tx1. Inductively, we can construct a sequence {xn}
in X such that {

x2n+1 = Sx2n,

x2n+2 = Tx2n+1, ∀n ≥ 0.
(2.8)

Now, we show that {xn} is a Cauchy sequence in X. If we set

dm(t) =M(xm, xm+1, xm+1, t), ∀t > 0, (2.9)
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then we prove that {dm(t)} is increasing with respect to m ∈ N . In fact, for
any odd m = 2n+ 1 ∈ N , we have

d2n+1(kt)

=M(x2n+1, x2n+2, x2n+2, kt)

=M(Sx2n, Tx2n+1, Tx2n+1, kt)

≥ a(t)M(x2n, Sx2n, Sx2n, t) + b(t)M(x2n+1, Tx2n+1, Tx2n+1, t)

+ c(t)M(x2n, Tx2n+1, Tx2n+1, αt)

+ d(t)M(x2n+1, Sx2n, Sx2n, (2− α)t)

+ e(t)M(x2n, x2n+1, x2n+1, t)

= a(t)M(x2n, x2n+1, x2n+1, t) + b(t)M(x2n+1, x2n+2, x2n+2, t)

+ c(t)M(x2n, x2n+2, x2n+2, αt)

+ d(t)M(x2n+1, x2n+1, x2n+1, (2− α)t)

+ e(t)M(x2n, x2n+1, x2n+1, t)

and so

d2n+1(kt)

≥ a(t)d2n(t) + b(t)d2n+1(t) + c(t)d2n(t) ∗ d2n+1(qt)

+ d(t) + e(t)d2n(t).

(2.10)

The equality in (2.10) is true because, if set α = 1 + q for any q ∈ (k, 1), then

M(x2n, x2n+2, x2n+2, (1 + q)t)

=M(x2n, x2n, x2n+2, (1 + q)t)

≥M(x2n, x2n, x2n+1, t) ∗M(x2n+1, x2n+2, x2n+2, qt)

= d2n(t) ∗ d2n+1(qt).

Now, we claim that

d2n+1(t) ≥ d2n(t), ∀n ≥ 1.

In fact, if d2n+1(t) < d2n(t), then, since

d2n+1(qt) ∗ d2n(t) ≥ d2n+1(qt) ∗ d2n+1(qt) = d2n+1(qt)

in (3.10), we have

d2n+1(kt) > a(t)d2n+1(qt) + b(t)d2n+1(qt) + c(t)d2n+1(qt)

+ d(t)d2n+1(qt) + e(t)d2n+1(qt)

= d2n+1(qt)
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and so d2n+1(kt) > d2n+1(qt), which is a contradiction. Hence d2n+1(t) ≥
d2n(t) for all n ∈ N and t > 0. By (2.10), we have

d2n+1(kt) ≥ a(t)d2n(qt) + b(t)d2n(qt) + c(t)d2n(qt) ∗ d2n(qt)

+ d(t)d2n(qt) + ep(t)d2n(qt)

= d2n(qt).

Now, if m = 2n, then, by (2.9), we have

d2n(kt)

=M(x2n, x2n+1, x2n+1, kt)

=M(Sx2n−1, Tx2n, Tx2n, kt)

≥ a(t)M(x2n−1, Sx2n−1, Sx2n−1, t) + b(t)M(x2n, Tx2n, Tx2n, t)

+ c(t)M(x2n−1, Tx2n, Tx2n, αt)

+ d(t)M(x2n, Sx2n−1, Sx2n−1, (2− α)t)

+ e(t)M(x2n−1, x2n, x2n, t)

= a(t)M(x2n−1, x2n, x2n, t) + b(t)M(x2n, x2n+1, x2n+1, t)

+ c(t)M(x2n−1, x2n+1, x2n+1, αt) + d(t)M(x2n, x2n, x2n, (2− α)t)

+ e(t)M(x2n−1, x2n, x2n, t)

and so

d2n(kt) ≥ a(t)d2n−1(t) + b(t)d2n(t) + c(t)d2n−1(t) ∗ d2n(qt)

+ d(t) + e(t)d2n−1(t).
(2.11)

The equality in (2.11) is true because, if α = 1 + q for any q ∈ (k, 1), then

M(x2n−1, x2n+1, x2n+1, (1 + q)t)

=M(x2n−1, x2n−1, x2n+1, (1 + q)t)

≥M(x2n−1, x2n−1, x2n, t) ∗M(x2n, x2n+1, x2n+1, qt)

= d2n−1(t) ∗ d2n(qt).

Now, we also claim that

d2n(t) ≥ d2n−1(t), ∀n ≥ 1.

In fact, if d2n(t) < d2n−1(t), then, since

d2n(qt) ∗ d2n−1(t) ≥ d2n(qt) ∗ d2n(qt) = d2n(qt)

in (3.11), we have

d2n(kt)

> a(t)d2n(qt) + b(t)d2n(qt) + c(t)d2n(qt) + d(t)d2n(qt) + e(t)d2n(qt)

= d2n(qt)
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and so d2n(kt) > d2n(qt), which is a contradiction. Hence d2n(t) ≥ d2n−1(t)
for all n ∈ N and t > 0. By (2.11), we have

d2n(kt)

≥ a(t)d2n−1(qt) + b(t)d2n−1(qt) + c(t)d2n−1(qt) ∗ d2n−1(qt)

+ d(t)d2n−1(qt) + e(t)d2n−1(qt)

= d2n−1(qt)

and so d2n(kt) ≥ d2n−1(qt). Thus we have

dn(kt) ≥ dn−1(qt), ∀n ≥ 1.

Therefore, it follows that

M(xn, xn+1, xn+1, t) ≥M(xn−1, xn, xn,
q

k
t) ≥ · · · ≥ M(x0, x1, x1, (

q

k
)nt).

Hence, by Lemma 1.16, {xn} is a Cauchy sequence in X and, by the complete-
ness of X, {xn} converges to a point x ∈ X and

lim
n→∞

x2n+1 = lim
n→∞

Sx2n = lim
n→∞

Tx2n+1 = lim
n→∞

x2n+2 = x.

Now, we prove that Sx = x. In fact, letting α = 1, x = x and y = x2n+1 in
(2.7), respectively, we obtain

M(Sx, Tx2n+1, Tx2n+1, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x2n+1, Tx2n+1, Tx2n+1, t)

+ c(t)M(x, Tx2n+1, Tx2n+1, t) + d(t)M(x2n+1, Sx, Sx, t)

+ e(t)M(x, x2n+1, x2n+1, t).

(2.12)

If Sx 6= x, then, letting n −→∞ in (23.12), we have

M(Sx, x, x, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x, x, x, t)

+ c(t)M(x, x, x, t) + d(t)M(x, Sx, Sx, t) + e(t)M(x, x, x, t)

>M(x, x, Sx, t),

which is a contradiction. Thus it follows that Sx = x.
Similarly, we can prove that Tx = x. In fact, again, replacing x by x2n and

y by x in (2.7), respectively, for α = 1, we have

M(Sx2n, Tx, Tx, kt)

≥ a(t)M(x2n, Sx2n, Sx2n, t) + b(t)M(x, Tx, Tx, t)

+ c(t)M(x2n, Tx, Tx, t) + d(t)M(x, Sx2n, Sx2n, t)

+ e(t)M(x2n, x, x, t)

(2.13)
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and so, if Tx 6= x, letting n −→∞ in (2.13), we have

M(x, Tx, Tx, kt)

≥ a(t)M(x, x, x, t) + b(t)M(x, Tx, Tx, t)

+ c(t)M(x, Tx, Tx, t) + d(t)M(x, x, x, t) + e(t)M(x, x, x, t)

>M(x, Tx, Tx, t),

which implies that Tx = x. Therefore, Sx = Tx = x and x is a common fixed
point of the self-mappings S and T of X.

The uniqueness of a common fixed point x is easily verified by using the
hypothesis. In fact, if x′ be another fixed point of S and T , then, for α = 1,
by (2.7), we have

M(x, x′, x′, kt)

=M(Sx, Tx′, Tx′, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x′, Tx′, Tx′, t)

+ c(t)M(x, Tx′, Tx′, t) + d(t)M(x′, Sx, Sx, t) + e(t)M(x, x′, x′, t)

>M(x, x′, x′, t).

and so x = x′. �

Example 2.5. Let (X,M, ∗) be an M-fuzzy metric space, where X = [0, 1]
with t-norm defined a ∗ b = min{a, b} for all a, b ∈ [0, 1] and

M(x, y, z, t) =
t

t+ |x− y|+ |y − z|+ |x− z|
, ∀t > 0, x, y, z ∈ X.

Define the self-mappings T and S on X as follows:

Tx = 1, Sx =

{
1 if x is rational,

0 if x is irrational.

We can find the functions a, b, c, d, e : [0,∞) −→ [0, 1] such that a(t) + b(t) +
c(t) + d(t) + e(t) = 1 and the following inequality holds:

M(Sx, Ty, Ty, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Ty, Ty, t)

+ c(t)M(x, Ty, Ty, αt) + d(t)M(y, Sx, Sx, (2− α)t)

+ e(t)M(x, y, y, t).

It is easy to see that the all the conditions of Theorem 3.4 hold and 1 is a
unique common fixed point of S and T .

From Theorem 2.4, we have the following:
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Corollary 2.6. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S be a mapping from X into itself such that there exists
k ∈ (0, 1) such that

M(Sx, Sy, Sy, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Sy, Sy, t)

+ c(t)M(x, Sy, Sy, αt) + d(t)M(y, Sx, Sx, (2− α)t)

+ e(t)M(x, y, y, t)

for all x, y ∈ X and α ∈ (0, 2), where a, b, c, d, e : [0,∞) −→ [0, 1] are five
functions such that

a(t) + b(t) + c(t) + d(t) + e(t) = 1, ∀t ∈ [0,∞).

Then S have a unique common fixed point in X.

Corollary 2.7. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S be a mapping from X into itself such that there exists
k ∈ (0, 1) such that

M(Sx, y, y, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x, y, y, αt)

+ c(t)M(y, Sx, Sx, (2− α)t) + d(t)M(x, y, y, t)

for all x, y ∈ X and α ∈ (0, 2), where a, b, c, d : [0,∞) −→ [0, 1] are five
functions such that

a(t) + b(t) + c(t) + d(t) = 1, ∀t ∈ [0,∞).

Then S have a unique common fixed point in X.

Corollary 2.8. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S and T be mappings from X into itself such that there
exists k ∈ (0, 1) such that

M(Snx, Tmy, Tmy, kt)

≥ a(t)M(x, Snx, Snx, t) + b(t)M(y, Tmy, Tmy, t)

+ c(t)M(x, Tmy, Tmy, αt) + d(t)M(y, Snx, Snx, (2− α)t)

+ e(t)M(x, y, y, t)

for all x, y ∈ X, α ∈ (0, 2) and n,m ≥ 2, where a, b, c, d, e : [0,∞) −→ [0, 1]
are five functions such that

a(t) + b(t) + c(t) + d(t) + e(t) = 1, ∀t ∈ [0,∞).

If SnT = TSn and TmS = STm, then S and T have a unique common fixed
point in X.
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Proof. By Theorem 2.4, Sn and Tm have a unique common fixed point in X.
That is, there exists a unique point z ∈ X such that Sn(z) = Tm(z) = z. Since
S(z) = S(Sn(z)) = Sn(S(z)) and S(z) = S(Tm(z)) = Tm(S(z)), that is, S(z)
is fixed point Sn and Tm and so S(z) = z. Similarly, T (z) = z. This completes
the proof. �

Corollary 2.9. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S and T be mappings from X into itself such that there
exists k ∈ (0, 1) such that

M(Sx, Ty, Ty, kt) ≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Ty, Ty, t)

for all x, y ∈ X and α ∈ (0, 2), where a, b : [0,∞) −→ [0, 1] are two functions
such that

a(t) + b(t) = 1, ∀t ∈ [0,∞).

Then S and T have a unique common fixed point in X.
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