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PERFORMANCE OF MYOPIC POLICY FOR

OPPORTUNISTIC SPECTRUM SHARING

Yutae Lee

Abstract. Due to underutilization of spectrum under current inefficient

and static spectrum management policy, various kinds of opportunistic

spectrum access (OSA) strategies have appeared. Myopic policy is a sim-
ple and robust OSA strategy with reduced complexity that maximizes

immediate throughput. In this paper, we propose mathematical models
to evaluate the throughput and the MAC delay of a myopic policy under

saturation traffic conditions. Using the MAC delay distribution, we eval-

uate the packet delay of secondary users under nonsaturation conditions.
Numerical results are given to show the performance of the myopic policy

in cognitive radio networks.

1. Introduction

With exponential growth in wireless services to share the wireless spectrum,
there is an increasing demand for more capacity to be used. On the other
hand, most spectrum bands suitable for terrestrial wireless communication have
already been allocated to existing licensees [5]. This expected shortage in
spectrum supply, which is a major issue for service providers interested in
integrating new wireless services into existing communication infrastructure
enhancing the capacity for existing applications, is shown to be due not to
spectrum scarcity, but to current inefficient and static spectrum management
policy [18]. Recent extensive measurement-based studies [17, 3] indicate that
a large portion of the licensed spectrum of deployed wireless communication
network lies unused in space and time. Even when a channel is actively used,
many bursty applications result in abundant spectrum opportunities at slot
level [19].

As a solution for the inefficient spectrum usage, Federal Communications
Commission (FCC) promotes the so-called opportunistic spectrum access (OSA),
which improves spectrum efficiency by allowing secondary users not having a
license for spectrum usage to opportunistically occupy an idle spectrum owned
by licensee named primary user in a manner that limits interference to primary
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users [7]. To take transmission opportunities left by the primary users and to
limit the level of interference perceived by the primary users, secondary users
need to sense before transmitting. With limited sensing and access capability,
secondary users may not be able to sense all the channels in licensed spec-
trum simultaneously. So, they need to decide on which channel to sense and
which channel to access based on the sensing outcomes [19]. Therefore, for the
design of efficient OSA we need to optimize the sensing and access protocol
[11, 12, 15, 16]. The design of optimal sensing strategies can be formulated in
the framework of partially observable Markov decision process [6, 13]. In [7],
the author modeled primary channels as discrete-time Markov chains and de-
veloped an OSA scheme to minimize completion time of secondary users based
on the theory of finite-horizon partially observable Markov decision process.
Unfortunately, the solution to optimal partially observable Markov decision
process has exponential complexity with respect to the number of channels
[19]. A common approach for tractable solutions is to consider myopic policies,
which aim at maximizing only immediate reward. In [19] the throughput of a
myopic sensing policy for two channels has been derived in closed-form. The
authors also discussed the lower and upper bounds on the throughput of the
myopic sensing policy for the case of N channels. They show that the my-
opic policy is a simple and robust OSA strategy that maximizes immediate
throughput and achieves optimality under certain conditions.

In this paper, to evaluate the MAC delay and the packet delay as well as
the throughput of secondary users, we present a simple and efficient mathe-
matical model for the myopic policy. The MAC delay and the packet delay
are important performance measures when we consider the quality of service
of secondary users. Based on our model, we derive the throughput perfor-
mance and the MAC delay distribution of secondary users under saturation
traffic conditions. Using the MAC delay distribution, we also present a queue-
ing model to evaluate the packet delay of secondary users under nonsaturation
traffic conditions.

The rest of the paper is organized as follows. We first study the structure
of the myopic policy in Section 2 before presenting our mathematical model in
Section 3. We also analyze the saturation and nonsaturation performance in
Section 3. Numerical results are given in Section 4. We conclude the paper in
Section 5.

2. Myopic policy

We consider a spectrum consisting of two primary channels. These channels
are modeled as independent and stochastically identical Gilbert-Elliot channels
[4, 20]. As illustrated in Figure 1, the occupancy Si(k), k ≥ 1, of channel i,
i = 1, 2, in slot k follows a discrete-time two-state Markov chain on state
space {0, 1} with one-step transition probability matrix {pij}i,j=0,1. State 0
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Figure 1. Gilbert-Elliot channel model

represents that the channel is occupied by primary users while state 1 represents
that the channel is idle.

We consider a secondary user seeking spectrum opportunities. Limited by
its hardware constraints and energy supply, the full spectrum is not observable
to the secondary user. However, it can infer the state from its decision and
observation history. Immediately before the beginning of slot k, k ≥ 1, its
knowledge of the channels’ state is given by belief vector (λ1(k), λ2(k)), where
λi(k), i = 1, 2, is the conditional probability that channel i is available imme-
diately before slot k, given all past decision and observations. In each slot, the
secondary user with packets to transmit chooses a channel to sense. For myopic
policy, the action in slot k is chosen to maximize expected immediate through-
put, i.e., the index a(k) of the channel the user selects at slot k is simply given
by

a(k) = arg max
i=1,2

λi(k) (1)

for k ≥ 1. If the chosen channel is sensed to be idle, the secondary user
transmits its packet. Otherwise, the secondary user does not transmit the
packet. Immediately before the beginning of slot k+ 1, k ≥ 1, the belief vector
is updated based on the action a(k) with observation outcome Θa(k) (indicating
the availability of channel a(k)) as follows:

λi(k + 1) =

 p01, if a(k) = i and Θa(k) = 0,
p11, if a(k) = i and Θa(k) = 1,
λi(k)p11 + (1− λi(k))p01, if a(k) 6= i

for i = 1, 2. We set λi(1) as the stationary probability ω ≡ p01/(p01 + p10) of
the channel being idle and choose the initial action randomly.

Note that the belief vector forms a two-dimensional Markov process with
an uncountable state space. In general, obtaining the myopic action in each
slot requires the comparison between the entries of the belief vector with an
uncountable state space and the recursive update of the belief vector, which
make its performance evaluation difficult. However, the myopic policy has a
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Figure 2. Evolution of the belief vector when p01 < p11

simple structure that does not need the update of the belief vector or the
comparison between the entries of the belief vector [19].

First, we consider the case of p01 < p11. If channel i, i = 1, 2, is observed to
be idle in slot k, k ≥ 1, the probability λi(k + 1) becomes p11 (see in Figure
2). Since λj(k + 1) < p11 for j 6= i, channel i is sensed again in slot k + 1. On
the other hand, if channel i is observed to be busy in slot k, the probability
λi(k + 1) becomes p01. Since λj(k + 1) > p01 for j 6= i, the other channel is
sensed in slot k + 1. Thus, if the chosen channel is observed to be idle, the
channel is chosen again in the next slot; otherwise, the other channel is chosen
in the next slot.

Second, we consider the case of p01 > p11. If channel i, i = 1, 2, is observed
to be idle in slot k, k ≥ 1, the probability λi(k+ 1) becomes p11 (see in Figure
3). Since λj(k + 1) > p11 for j 6= i, the other channel is sensed in slot k + 1.
On the other hand, if channel i is observed to be busy in slot k, the probability
λi(k+ 1) becomes p01. Since λj(k+ 1) < p01 for j 6= i, channel i is also sensed
again in slot k + 1. Thus, if the chosen channel is observed to be busy, the
channel is chosen again in the next slot; otherwise, the other channel is chosen
in the next slot.

If p01 = p11, myopic policy implies random channel selection. So, in this
paper we assume p01 6= p11.
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Figure 3. Evolution of the belief vector when p01 > p11

3. Mathematical analysis

3.1. Saturation analysis

To analyze the performance of a secondary user under saturation condition,
we assume that the secondary user always has another packet immediately after
the successful completion of a packet transmission. We also assume that the sec-
ondary user performs perfect sensing. Then, under the assumptions, the process
{(S1(k), S2(k), a(k)), k ≥ 1} becomes a tri-dimensional discrete-time Markov
chain with finite state space {(0, 0, 1), (0, 1, 1), (0, 0, 2), (1, 0, 2), (1, 0, 1), (1, 1, 1),
(0, 1, 2), (1, 1, 2)}. We analyze the stationary probability distribution for the
Markov chain, defined by

πi,j,l ≡ lim
k→∞

P{S1(k) = i, S2(k) = j, a(k) = l},

π0 ≡ (π0,0,1, π0,1,1, π0,0,2, π1,0,2),

π1 ≡ (π1,0,1, π1,1,1, π0,1,2, π1,1,2),

π ≡ (π0, π1).

The one-step transition probability matrix of the Markov chain is given by

P ≡
(

P00 P01

P10 P11

)
, (2)
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where for p01 < p11

P00 ≡


0 0 p00p00 p01p00
0 0 p00p10 p01p10

p00p00 p00p01 0 0
p10p00 p10p01 0 0

 ,

P01 ≡


0 0 p00p01 p01p01
0 0 p00p11 p01p11

p01p00 p01p01 0 0
p11p00 p11p01 0 0

 ,

P10 ≡


p10p00 p10p01 0 0
p10p10 p10p11 0 0

0 0 p00p10 p01p10
0 0 p10p10 p11p10

 ,

P11 ≡


p11p00 p11p01 0 0
p11p10 p11p11 0 0

0 0 p00p11 p01p11
0 0 p10p11 p11p11

 ,

and for p01 > p11

P00 ≡


p00p00 p00p01 0 0
p00p10 p00p11 0 0

0 0 p00p00 p01p00
0 0 p10p00 p11p00

 ,

P01 ≡


p01p00 p01p01 0 0
p01p10 p01p11 0 0

0 0 p00p01 p01p01
0 0 p10p01 p11p01

 ,

P10 ≡


0 0 p10p00 p11p00
0 0 p10p10 p11p10

p00p10 p00p11 0 0
p10p10 p10p11 0 0

 ,

P11 ≡


0 0 p10p01 p11p01
0 0 p10p11 p11p11

p01p10 p01p11 0 0
p11p10 p11p11 0 0

 .

The stationary probability vector π of {(S1(k), S2(k), a(k)), k ≥ 1} is given by
solving the equations πP = π and πe = 1, where e is a column vector of 1’s
[2, 14].

The saturation throughput Ssat is given by

Ssat = π1e. (3)
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Now we compute the distribution of the MAC delay of a secondary user under
saturation traffic conditions. The MAC delay is defined as the time needed for
a packet to be successfully transmitted, given that the packet is at the head-
of-line position in the buffer. Let dl be the probability that the MAC delay
under saturation traffic condition is l slots. Then

d1 =
π1P11e

π1e
, dl =

π1P10P
l−2
00 P01e

π1e
, l > 1. (4)

3.2. Nonsaturation analysis

To analyze the secondary user of the myopic policy under nonsaturation
traffic conditions, we assume that the secondary user has infinite buffer to
store its packets and the packet arrivals follow a batch geometric process [8, 9].
The number of packets arriving during the consecutive slots are assumed to
be i.i.d. non-negative discrete random variables with an arbitrary probability
distribution and are characterized by the probability generating function (pgf)
A(z). When we model the secondary user as a queueing system, the MAC delay
can be considered as service time. We consider two cases: a packet entering
an empty system and a packet entering a non-empty system. The state of the
Markov chain {(S1(k), S2(k), a(k)), k ≥ 1} observed by a packet entering an
empty system is given by (

(1− ω)x

2
,
ωx

2

)
by BASTA property, where ω is the stationary probability that a channel is
idle, and x ≡ (1−ω, ω, 1−ω, ω). Thus, the probability del that the MAC delay
of a packet entering an empty system is l slots is given by

de1 =
ωx

2
e, del =

(1− ω)x

2
P00

l−2P01e, l > 1. (5)

On the other hand, the MAC delay of a packet entering a non-empty system
can be approximated by the saturation MAC delay obtained by (4). Therefore,
we can model a secondary user as a discrete-time GeoX/G/1 queue [10, 1]
with service time {dl, l ≥ 1}, in which packets entering an empty system have
the exceptional service time {del , l ≥ 1}. Then, the mean packet delay D of a
secondary user is given by

D =
[A′(1)]

2
[S′(1) + S′′(1)] +A′′(1)S′(1)

2A′(1) [1−A′(1)S′(1)]
− 1

2
(6)

+
[1−A(0)] [S′′e (1)− S′′(1)] + 2S′e(1)

2 [1 + {1−A(0)} {S′e(1)− S′(1)}]
,
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Figure 4. Throughput under saturation traffic condition

where S(z) and Se(z) are the pgf’s of the service time {dl, l ≥ 1} and the
exceptional service time {del , l ≥ 1}, respectively:

S(z) ≡
∞∑
l=1

dlz
l =

π1P11e

π1e
z +

π1P10 [I−P00z]
−1

P01e

π1ez2
, (7)

Se(z) ≡
∞∑
l=1

del z
l =

ωx

2
ez +

(1− ω)x

2

[I−P00z]
−1

P01e

z2
. (8)

4. Numerical results

In this section, we present numerical results to evaluate the performance of
the myopic policy.

Figure 4 shows the saturation throughput of a secondary user as the channel-
state transition probabilities vary. As p01 and/or p11 increase, the probability
of the channels being idle also increases. Thus, the saturation throughput
increases. Figure 5 shows the analytic results of the mean MAC delay under
saturation traffic conditions as the channel-state transition probabilities vary.
As p01 and/or p11 increase, the probability of the channels being idle also
increases. Thus, the mean MAC delay decreases. In Figure 4 and 5, the upper
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Figure 5. Mean MAC delay under saturation traffic condition

part of the bold line is for p01 < p11, and the lower part of the bold line is for
p01 > p11.

Figure 6 shows the analytic results of the mean packet delay, including the
queueing delay and the transmission time, under nonsaturation traffic condi-
tions. In this example, we set A(z) = 1 − λ + λz for nonsaturation condition
and fix the stationary probability ω of channel being idle as 1/2. In the figure,
as λ increases, the mean packet delay also increases. The solid lines are for
p01 < p11, and the dashed lines are for p01 > p11. As p01 increases with fixed λ,
the mean packet delay decreases, because the burstiness of channel availability
decreases.

5. Conclusions

In this paper, we have developed a simple and efficient mathematical model
for evaluating the performance of a myopic policy. Based on our model, we
derived the saturation throughput of the myopic policy. We also analyzed the
MAC delay distribution of a secondary user under saturation traffic conditions.
Using the MAC delay distribution, we evaluated the packet delay of a secondary
user under nonsaturation traffic conditions. The MAC delay and the packet
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Figure 6. Mean packet delay under nonsaturation traffic condition

delay are important performance measures when we consider the quality of
service of a secondary user.
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