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RADIAL SYMMETRY OF TOPOLOGICAL SOLUTIONS

IN THE SELF-DUAL MAXWELL-CHERN-SIMONS

GAUGED O(3) SIGMA MODEL

Kyungwoo Song

Abstract. Using the moving plane method, we establish the radial sym-
metry of topological one-vortex solutions of a semilinear elliptic system
arising from the self-dual Maxwell-Chern-Simons O(3) model.

1. Introduction

In this paper we are interested in the following system of semilinear elliptic
equations in R2;

(1.1)
∆u = 2q

(
−N + s− 1− eu

1 + eu

)
+ 4π

l1∑
j=1

njδpj − 4π

l2∑
j=1

mjδqj ,

∆N = −κ2q2
(
−N + s− 1− eu

1 + eu

)
+ q

4eu

(1 + eu)2
N.

Here, P = {p1, . . . , pl1} is a set of vortex points and Q = {q1, . . . , ql2} is a set
of anti-vortex points. All of these are distinct points in R2. The unknowns are
u : R2\(P ∪Q) → R and N : R2 → R. Furthermore, nj ’s and mj ’s are positive
integers, κ and q are positive constants, and −1 < s < 1.

The system (1.1) is originated from the self-dual equations of the Maxwell-
Chern-Simons gauged O(3) model [6] which was suggested in order to break
the scale invariance of solutions of the classical sigma model having the energy
lower bound of a Bogomol’nyi type. In this model, the Maxwell and the Chern-
Simons terms constitute the kinetic term for the gauge field, and the self-duality
was attained by introducing a neutral scalar field N . For more information of
this model and the derivation of (1.1), one can refer to [4].

We note that if (u,N) is a solution pair of (1.1) with 0 ≤ s < 1, then
(−u,−N) is also a solution for −s with the change of roles of pj ’s and qj ’s.
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Therefore, throughout this paper, we assume that 0 ≤ s < 1. There are two
kinds of boundary conditions for (1.1);
either

(1.2) u → ln
1− s

1 + s
, N → 0,

or

(1.3) u → −∞, N → s− 1.

The former is called topological and the latter nontopological. See [4] for further
discussion for physical meaning of these boundary conditions. In this paper,
we consider the topological condition (1.2). There are several results on (1.1)
when the ’t Hooft type periodic boundary conditions are given on a lattice
(refer to [1, 2, 7, 8]). For the existence of solutions of (1.1) with a condition of
(1.2) in the whole plane, there are two results as follows.

Theorem 1.1 ([4]). There exists a constant κ0 satisfying that for each 0 <
κ < κ0, there is a constant qκ > 0 such that a system of equations (1.1) with a
condition of (1.2) admit a solution (u,N) ∈ C∞(R2\(P ∪Q))×C∞(R2) for all
q > qκ. Moreover, the functions u2, N2, |∇u|2, and |∇N |2 decay exponentially
at infinity.

The constraints on κ and q in Theorem 1.1 are due to the method of con-
struction of the solutions. In fact, such a restriction was necessary to find a
subsolution in the super- and subsolution method and assures the iteration
method being successful. This restriction can be removed when there appear
only vortex points. In this case, we have

(1.4)
∆u = 2q

(
−N + s− 1− eu

1 + eu

)
+ 4π

l∑
j=1

njδpj ,

∆N = −κ2q2
(
−N + s− 1− eu

1 + eu

)
+ q

4eu

(1 + eu)2
N.

Here, we put l = l1. The number d = n1 + · · · + nl is called the total vortex
number. For the system (1.4), we have the following result.

Theorem 1.2 ([5]). For any κ, q > 0, there exists a solution pair (u,N) of a
system (1.4) with the boundary condition of (1.2).

For simplicity, we define some notations as follows:

a =
1 + s

1− s
∈ [1,∞), w = u+ ln a, f(t) =

t− a

t+ a
+ s =

2a(t− 1)

(a+ 1)(t+ a)
,

where f ′(t) > 0 and f ′′(t) < 0 on [0,∞). In particular, when the vortex points
are the same point, say the origin, the system of equations (1.4) becomes

(1.5)
∆w = 2q(−N + f(ew)) + 4πdδ0,

∆N = −κ2q2(−N + f(ew)) + 2qf ′(ew)ewN,
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with the topological boundary condition

w,N → 0 as |x| → ∞.(1.6)

The goal of this paper is to show that every solution of (1.5) with (1.6) is radi-
ally symmetric about the origin. Though (1.5) is a system of equations, it has
lots of maximum principle structures as we can see in the next section. This
enables us to use the moving plane method to show the radial symmetry of solu-
tions. For related works, it was shown that topological one-vortex solutions in
the Abelian Maxwell-Chern-Simons-Higgs model are radially symmetric about
the vortex point [3]. The main ingredient is to handle the difficulty arising
from the sign changes of the derivatives of the nonlinear terms of the equa-
tions, from which we can apply the maximum principle. The statement of the
main theorem is as follows.

Theorem 1.3. Suppose that s ∈ [1/3, 1), or equivalently a ≥ 2. If (w,N) is
a solution pair of (1.5) with (1.6), then (w,N) is radially symmetric about the
origin.

2. Radial symmetry of one-vortex solutions

This section is devoted to the proof of Theorem 1.3. To begin with, we use
the maximum principle to get uniform signs of w and N .

Lemma 2.1. If (w,N) is a solution pair of (1.5) with (1.6), then w < 0 in
R2 \ {0} and N < 0 in R2.

Proof. Assume N attains its positive maximum value at a point y. By the
maximum principle to the second equation of (1.5), we have

0 < N ≤ κ2q2

2qf ′(ew)ew + κ2q2
f(ew)

at the maximum point y. Then we see that f(ew(y)) > 0, which means w(y) >
0. Let z be a positive maximum point of w. Again by the maximum principle
to the first equation of (1.5), N(z) ≥ f(ew(z)). Consequently, we have

f(ew(z)) ≤ N(z) ≤ N(y) ≤ κ2q2f(ew(y))

2qf ′(ew(y))ew(y) + κ2q2
< f(ew(y)).

This leads to a contradiction since w(z) ≥ w(y) > 0 and f is strictly increasing.
Hence N ≤ 0 for any point. On the other hand, the first equation of (1.5)
becomes

∆w ≥ 2qf(ew) + 4πdδ0

in the sense of distribution since N ≤ 0. By the strong maximum principle, we
have w < 0 in R2 \ {0}. Let us rewrite the second equation of (1.5) as

∆N − (κ2q2 + 2qf ′(ew)ew)N = −κ2q2f(ew)

with N → 0 as |x| → ∞. Again by the strong maximum principle, we find that
N < 0 in R2. □
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For the proof of the radially symmetric property of solutions, we use the
method of moving planes. For λ < 0 and x = (x1, x2) ∈ R2, we let

Σλ = {x ∈ R2 : x1 < λ}, Γλ = ∂Σλ,

xλ = (2λ, 0), Σ̃λ = Σ \ {xλ}.
Then we define new functions

wλ(x) = w(2λ− x1, x2) for x ∈ Σ̃λ,

Nλ(x) = N(2λ− x1, x2) for x ∈ Σλ,

γλ(x) = wλ(x)− w(x) for x ∈ Σ̃λ,

βλ(x) = Nλ(x)−N(x) for x ∈ Σλ.

Although wλ is not defined at xλ, e
wλ is well defined at xλ such that ewλ(xλ) =

0. Then, a short computation gives

∆γλ = − 2qβλ + 2q
(
f(ewλ)− f(ew)

)
(2.1)

= − 2qβλ + 2qf ′(eζ)eξγλ on Σ̃λ,

∆βλ =
(
κ2q2 + 2qf ′(ewλ)ewλ

)
βλ − κ2q2

(
f(ewλ)− f(ew)

)
+ 2q

(
f ′(ewλ)ewλ − f ′(ew)ew

)
N on Σλ,(2.2)

where ζ(x) and ξ(x) lie between wλ(x) and w(x).

Lemma 2.2. There exists a number R0 > 0 such that if βλ has a positive
maximum value at y in Σλ, then |y| ≤ R0.

Proof. Let us consider a polynomial

p(t) = κ2q2t(t+ a)2 + 4qat2 + κ(a+ 1)2(t− 1)− κ2q2(a+ 1)2.

Since p(1) > 0, we can choose η ∈ (0, 1) so close to 1 that p(η) > 0. Since
w,N → 0 as |x| → ∞, there exists a number R1 > 0 such that

(2.3) ln η < w(x) < 0 and − κ

2q
(1− η) < N(x) < 0 for all |x| ≥ R1.

Let µ1 = max|x|≤R1
w(x) < 0. Since w → 0 as |x| → ∞, we can find a number

R2 > R1 such that

(2.4) µ1 < w(x) < 0 for all |x| ≥ R2.

For a ≥ 1, we also choose R3 > R2 and µ2 < 0 so that

(2.5) κ2qa3 + 4µ2(a+ 1)2 > 0 and µ2 < N(x) < 0 for all |x| ≥ R3.

We set R0 = 2R3.
Suppose that βλ has a positive maximum value at y ∈ Σλ. In order to claim

|y| ≤ R0, let us assume the contrary, that is, |y| > R0. If y = xλ, then we
derive from the maximum principle to (2.2) that

0 ≥ κ2q2βλ(xλ)− κ2q2(f(0)− f(ew(xλ)))− 2qf ′(ew(xλ))ew(xλ)N(xλ) > 0,
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a contradiction. Here, we use the fact that f is strictly increasing for t ≥ 0,
ewλ(xλ) = 0, and N < 0 on R2. As a consequence, the positive maximum point
y occurs in a set S = {x : |x| > R0} ∩ Σ̃λ. Now we can rewrite (2.2) on Σ̃λ as

∆βλ =
(
κ2q2 + 2qf ′(ewλ)ewλ

)
βλ − κ2q2

(
f(ewλ)− f(ew)

)
+2qf ′(ewλ)

(
ewλ − ew

)
N + 2q

(
f ′(ewλ)− f ′(ew)

)
ewN

=
(
κ2q2 + 2qf ′(ewλ)ewλ

)
βλ − κ2q2f ′(eζ)eξγλ

+2q
(
f ′(ewλ)eξγλN + f ′′(eτ )eξewγλN

)
,(2.6)

where ζ(x), ξ(x) are the functions appearing in (2.1) and τ(x) lies between
wλ(x) and w(x). Applying the maximum principle, we deduce that

(2.7) βλ(y) ≤
κ2q2f ′(eζ)eξ − 2qf ′(ewλ)eξN − 2qf ′′(eτ )eξewN

κ2q2 + 2qf ′(ewλ)ewλ
γλ

∣∣∣
y
.

Since f ′(t) > 0 on [0,∞) and N < 0 on R2, we infer that

κ2q2f ′(eζ)eξ − 2qf ′(ewλ)eξN − 2qf ′′(eτ )eξewN

> κ2q2f ′(eζ)eξ − 2qf ′′(eτ )eξewN

= κ2q2
2a

(eζ + a)2
eξ +

8aq

(eτ + a)3
eξewN > 2aq

( κ2q

(a+ 1)2
+

4µ2

a3

)
eξ > 0

at the point y by the choice of a number µ2 < 0 in (2.5) for a fixed a ≥ 1. As
a consequence, we see that γλ(y) > 0. Furthermore, since f ′′(t) < 0 on [0,∞)
and N < 0 on R2, we deduce from (2.7) that

(2.8) βλ(y) ≤
κ2q2eξ(y)f ′(eζ(y))− 2qeξ(y)f ′(ewλ(y))N(y)

κ2q2 + 2qf ′(ewλ(y))ewλ(y)
γλ(y).

On the other hand, since γλ(x) → 0 as |x| → ∞ on Σ̃λ and γλ(x) → −∞
as x → xλ, we conclude that γλ has a maximum point on Σ̃λ. Let z be a
maximum point of γλ in Σ̃λ. Then γλ(z) ≥ γλ(y) > 0. The maximum principle
on the equation (2.1) and (2.8) yield that

f ′(eζ(z))eξ(z)γλ(y) ≤ f ′(eζ(z))eξ(z)γλ(z) ≤ βλ(z) ≤ βλ(y)

≤ κ2q2eξ(y)f ′(eζ(y))− 2qeξ(y)f ′(ewλ(y))N(y)

κ2q2 + 2qf ′(ewλ(y))ewλ(y)
γλ(y)

≤ κ2q2 − 2qN(y)

κ2q2 + 2qf ′(ewλ(y))ewλ(y)
eξ(y)f ′(eζ(y))γλ(y),(2.9)

where the last inequality comes from the decreasing property of f ′ on w(y) ≤
ζ(y) ≤ wλ(y). We also note that

eξ(y)f ′(eζ(y)) ≤ f ′(eζ(y)) ≤ f ′(η)



1116 KYUNGWOO SONG

on ln η < ζ(y), ξ(y) < 0. Since the function tf ′(t) is increasing on 0 < t < 1,

f ′(ewλ(y))ewλ(y) ≥ f ′(ew(y))ew(y) > f ′(η)η

on ln η < w(y) < wλ(y) < 0. From (2.3) and (2.9), we have

η
2a

(a+ 1)2
< f ′(eζ(z))eξ(z) <

κ2q2 − 2qN(y)

κ2q2 + 2qf ′(ewλ(y))ewλ(y)
eξ(y)f ′(eζ(y))

≤ κ2q2 + κ(1− η)

κ2q2 + 2qηf ′(η)
· 2a

(a+ η)2

on ln η < w(j) < ξ(j), ζ(j) < wλ(j) < 0 for j = y, z. Furthermore, this leads
to a contradiction;

1 <
κ2q2 + κ(1− η)

κ2q2 + 2qηf ′(η)
· (a+ 1)2

η(a+ η)2
<

κ2q2 + κ(1− η)

κ2q2 + 2q 2aη
(a+η)2

· (a+ 1)2

η(a+ η)2
< 1

by the choice of η. Hence, we complete the proof. □

Corollary 2.3. If λ ≤ −R0, then γλ ≤ 0 in Σ̃λ and βλ ≤ 0 in Σλ.

Proof. Assume that βλ(y) > 0 at some y ∈ Σλ for λ ≤ −R0. Then y /∈ {|x| ≤
R0}, which clearly contradicts to the previous lemma. Hence βλ ≤ 0 in Σλ.

It is clear that
γλ ≤ 0 on BR1(xλ) \ {xλ}

for λ ≤ −R0. Let us consider the equation (2.1)

∆γλ − 2qf ′(eζ)eξγλ = −2qβλ ≥ 0

with the boundary condition γλ ≤ 0 on ∂(Σ̃λ \ BR1(xλ)). By the maximum

principle, we have γλ ≤ 0 on Σ̃λ \BR1(xλ). Therefore, γλ ≤ 0 in Σ̃λ. □
As a consequence of the above corollary, we define a number

λ0 = sup{λ < 0 : γν ≤ 0 on Σ̃ν , βν ≤ 0 on Σν for all ν < λ}.

Lemma 2.4. For a ≥ 2, λ0 = 0.

Proof. Suppose that λ0 ̸= 0. For a sequence λk ∈ (λ0, 0) such that λk → λ0,
we have γλk

(zk) > 0 or βλk
(yk) > 0, where zk and yk are maximum points of

γλk
and βλk

, respectively. If γλk
(zk) > 0, then by the maximum principle to

(2.1), it is clear that βλk
(yk) > 0. So it is obvious βλk

(yk) > 0 no matter what
the sign of γλk

(zk) is. Setting r0 > max{R0,−λ0}, we can say |yk| ≤ r0 by
Lemma 2.2.

Passing to a subsequence, we may assume that yk converges to a point y.
Obviously,

y ∈ Σλ0 ∪ Γλ0 , βλ0(y) ≥ 0, and ∇βλ0(y) = 0.

Since a ≥ 2 and wλ0 ≤ τ ≤ w, we see that from (2.6)

∆βλ0 − (κ2q2 + 2qf ′(ewλ0 )ewλ0 )βλ0

≥ 2qNeξ
(
f ′(ewλ0 ) + f ′′(eτ )ew

)
γλ0
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= 2qNeξ
( 2a

(ewλ0 + a)2
− ew

4a

(eτ + a)3

)
γλ0

≥ 4aqNeξ
ewλ0 + a− 2ew

(eτ + a)3
γλ0 > 0

on Σλ0 . Then it follows from the strong maximum principle that βλ0 cannot
attain its maximum value in Σλ0 . So y ∈ Γλ0 . Then it comes from the Hopf
Lemma that (∂βλ0

/∂x1)(y) > 0, which contradicts to the fact that ∇βλ0
(y) =

0. Consequently, we come to the conclusion of λ0 = 0. □
Since λ0 = 0, we have for x1 < 0

w(−x1, x2) ≤ w(x1, x2) and N(−x1, x2) ≤ N(x1, x2).

By the standard moving plane argument, w and N are symmetric in the plane
about the origin. Therefore, we complete the proof of Theorem 1.3.
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