COMPACT MATRIX OPERATORS BETWEEN THE SPACES $m(\phi), n(\phi)$ AND ℓ_{p}

Eberhard Malkowsky and Mohammad Mursaleen

Abstract

We give the characterizations of the classes of matrix transformations $\left(m(\phi), \ell_{p}\right),\left(n(\phi), \ell_{p}\right)([5$, Theorem 2$])$, $\left(\ell_{p}, m(\phi)\right)$ ([5, Theorem 1]) and $\left(\ell_{p}, n(\phi)\right)$ for $1 \leq p \leq \infty$, establish estimates for the norms of the bounded linear operators defined by those matrix transformations, and characterize the corresponding subclasses of compact matrix operators.

1. Introduction and notations

If X and Y are Banach spaces, then $S_{X}=\{x \in X:\|x\|=1\}$ and $\bar{B}_{X}=\{x \in$ $X:\|x\| \leq 1\}$ are the unit sphere and the closed unit ball in X, and $\mathcal{B}(X, Y)$ is the set of all bounded linear operators $L: X \rightarrow Y$ with the operator norm $\|\cdot\|$ defined by $\|L\|=\sup \left\{\|L(x)\|: x \in S_{X}\right\} ; X^{*}=\mathcal{B}(X, \mathbb{C})$ is the continuous dual of X, that is, the space of all continuous linear functionals on X with the norm defined by $\|f\|=\sup \left\{|f(x)|: x \in S_{X}\right\}$ for all $f \in X^{*}$.

We write ω, and ℓ_{∞} and ϕ for the sets of all complex sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$, and of all bounded and finite sequences, respectively, and $\ell_{p}=\{x \in \omega$: $\left.\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}<\infty\right\}$ for $1 \leq p<\infty$; furthermore, $c s$ is the set of all convergent series. By e and $e^{(n)}(n=1,2, \ldots)$ we denote the sequences with $e_{k}=1$ for all k, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq n)$. If $x=\left(x_{k}\right)_{k=1}^{\infty}$ is a sequence and $n \in \mathbb{N}$ then we write $x^{[n]}=\sum_{k=1}^{n} x_{k} e^{(k)}$ for the n-section of x.

A $B K$ space X is a Banach sequence space such that the coordinate maps $P_{n}: X \rightarrow \mathbb{C}$ with $P_{n}(x)=x_{n}\left(x=\left(x_{k}\right)_{k=1}^{\infty} \in X\right)$ are continuous for each $n \in \mathbb{N}$. A $B K$ space $X \supset \phi$ is said to have $A K$, if every sequence $x=\left(x_{k}\right)_{k=1}^{\infty} \in X$ has a unique representation $x=\lim _{n \rightarrow \infty} x^{[n]}$.

Let x and y be sequences, X and Y be subsets of ω and $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ be an infinite matrix of complex numbers. Then $X^{\beta}=\left\{a \in \omega:\left(a_{k} x_{k}\right) \in c s\right.$ for all $x \in X\}$ is the β-dual of X. By $A_{n}=\left(a_{n k}\right)_{k=1}^{\infty}$ and $A^{(k)}=\left(a_{n k}\right)_{n=1}^{\infty}$, we denote the sequences in the $n^{\text {th }}$ row and the $k^{t h}$ column of the matrix A. We write

Received April 20, 2010.
2010 Mathematics Subject Classification. Primary 46B15; Secondary 46B45.
Key words and phrases. sequence spaces, matrix transformations, compact operators, Hausdorff measure of noncompactness.
$A_{n} x=\sum_{k=1}^{\infty} a_{n k} x_{k}, A x=\left(A_{n} x\right)_{n=1}^{\infty}$ (provided all the series $A_{n} x$ converge), and (X, Y) for the class of all matrices A such that $A_{n} \in X^{\beta}$ for all n and $A x \in Y$ for all $x \in X$.

Let X and Y be $B K$ spaces. Since matrix maps between $B K$ spaces are continuous ($[8$, Theorem 4.2.8, p. 57]), we have $(X, Y) \subset \mathcal{B}(X, Y)$, that is, every matrix $A \in(X, Y)$ defines an operator $L_{A} \in \mathcal{B}(X, Y)$ where $L_{A}(x)=A x$ for all $x \in X$.

The operator $\Delta: \omega \rightarrow \omega$ is defined by $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k-1}\right)_{k=1}^{\infty}(x \in \omega)$ where we suppose $x_{-1}=0$. Given any sequence x, we denote by $S(x)$ the class of all sequences that are rearrangements of x. Let \mathcal{C} denote the set of all finite subsets of \mathbb{N}. Given any set $\sigma \in \mathcal{C}$, we denote by $c(\sigma)$ the sequence with

$$
c_{n}(\sigma)= \begin{cases}1 & (n \in \sigma) \\ 0 & (n \notin \sigma) .\end{cases}
$$

For any $s \in \mathbb{N}, \mathcal{C}_{s}$ is the class of all $\sigma \in \mathcal{C}$ such that $\sum_{n=1}^{\infty} c_{n}(\sigma) \leq s$. The set Φ consists of all real sequences $\left(\phi_{k}\right)_{k=1}^{\infty}$ such that

$$
\phi_{1}>0, \Delta \phi_{k} \geq 0 \text { and } \Delta\left(\frac{\phi_{k}}{k}\right) \leq 0 \quad(k=1,2, \ldots)
$$

Sargent ([5]) defined and studied the following sequence spaces for $\phi \in \Phi$

$$
m(\phi)=\left\{x \in \omega: \sup _{s \geq 1} \sup _{\sigma \in \mathcal{C}_{s}}\left(\frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right|\right)<\infty\right\}
$$

and

$$
n(\phi)=\left\{x \in \omega: \sup _{u \in S(x)}\left(\sum_{k=1}^{\infty}\left|u_{k}\right| \Delta \phi_{k}\right)<\infty\right\}
$$

which are $B K$ spaces ([5, (iii) and (iv), p. 162]) with their natural norms defined by

$$
\|x\|_{m(\phi)}=\sup _{s \geq 1} \sup _{\sigma \in \mathcal{C}_{s}}\left(\frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right|\right) \text { and }\|x\|_{n(\phi)}=\sup _{u \in S(x)}\left(\sum_{k=1}^{\infty}\left|u_{k}\right| \Delta \phi_{k}\right) .
$$

We give necessary and sufficient conditions for infinite matrices A to belong to any of the classes $\left(m(\phi), \ell_{p}\right),\left(n(\phi), \ell_{p}\right)([5$, Theorem 2$]),\left(\ell_{p}, m(\phi)\right)([5$, Theorem 1]) and ($\left.\ell_{p}, n(\phi)\right)$ for $1 \leq p \leq \infty$, and establish estimates for the norms of the corresponding operators L_{A}. Finally we characterize the compact operators L_{A} defined by the matrices A in the classes above, except for the cases $\left(\ell_{1}, m(\phi)\right)$ and $\left(n(\phi), \ell_{\infty}\right)$.

2. Matrix transformations on and into $m(\phi)$ and $n(\phi)$

Here we give the characterizations of classes of matrix transformations A between the spaces $\ell_{p}(1 \leq p \leq \infty)$ and $m(\phi)$ and $n(\phi)$ some of which can be found in [5, Theorems 1 and 2], and estimates for the operator norms of L_{A}.

Throughout let q be the conjugate number of p, that is, $q=\infty$ for $p=1$, $q=p /(p-1)$ for $1<p<\infty$ and $q=1$ for $p=\infty$.

Let X be a $B K$ space and $a \in \omega$. We write

$$
\|a\|^{*}=\|a\|_{X}^{*}=\sup _{x \in S_{X}}\left|\sum_{k=1}^{\infty} a_{k} x_{k}\right|
$$

provided the expression on the righthand side exists and is finite which is the case whenever $a \in X^{\beta}$ ([8, Theorem 7.2.9, p. 107]).

First we give the characterization of the class $(X, m(\phi))$ where X is any $B K$ space, and establish an estimate for the operator norm of L_{A}.

Theorem 2.1. Let X be a BK space. Then
(a) We have $A \in(X, m(\phi))$ if and only if

$$
\begin{equation*}
\|A\|_{(X, m(\phi))}=\sup _{t \geq 1} \sup _{\tau \in \mathcal{C}_{t}}\left(\frac{1}{\phi_{t}}\left\|\sum_{n \in \tau} A_{n}\right\|_{X}^{*}\right)<\infty . \tag{2.1}
\end{equation*}
$$

(b) If $A \in(X, m(\phi))$, then

$$
\begin{equation*}
\|A\|_{(X, m(\phi))} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{(X, m(\phi))} \tag{2.2}
\end{equation*}
$$

Proof. (a) This is a special case of [2, Theorem 1].
(b) If $A \in(X, m(\phi))$, then $L_{A} \in \mathcal{B}(X, m(\phi))$, and so for all $x \in S_{X}, \tau \in \mathcal{C}_{t}$ and $t \geq 1$

$$
\frac{1}{\phi_{t}}\left|\sum_{k=1}^{\infty}\left(\sum_{n \in \mathcal{\tau}} a_{n k}\right) x_{k}\right| \leq \frac{1}{\phi_{t}} \sum_{n \in \mathcal{\tau}}\left|A_{n} x\right| \leq\left\|L_{A}(x)\right\|_{m(\phi)} \leq\left\|L_{A}\right\| .
$$

This clearly implies

$$
\frac{1}{\phi_{t}}\left\|\sum_{n \in \tau} A_{n}\right\|_{X}^{*} \leq\left\|L_{A}\right\| \text { for all } \tau \in \mathcal{C}_{t} \text { and } \tau \geq 1
$$

and consequently $\|A\|_{(X, m(\phi))} \leq\left\|L_{A}\right\|$, the first inequality in (2.2).
Furthermore, it follows from a well-known inequality ([4]) for all $x \in S_{X}, \tau \in \mathcal{C}_{t}$ and $\tau \geq 1$

$$
\sum_{n \in \tau}\left|A_{n} x\right| \leq 4 \cdot \max _{\tau^{\prime} \subset \tau}\left|\sum_{n \in \tau^{\prime}} A_{n} x\right| \leq 4 \cdot \max _{\tau^{\prime} \subset \tau}\left\|\sum_{n \in \tau^{\prime}} A_{n}\right\|_{X}^{*}
$$

and this implies

$$
\frac{1}{\phi_{t}} \sum_{n \in \tau}\left|A_{n} x\right| \leq 4 \cdot\|A\|_{(X, m(\phi))},
$$

hence

$$
\left\|L_{A}(x)\right\| \leq 4 \cdot\|A\|_{(X, m(\phi))} \text { for all } x \in S_{X}
$$

and finally $\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{(X, m(\phi))}$, the second inequality in (2.2).
Now we give the characterization of the class $(X, n(\phi))$ where X is any $B K$ space, and establish an estimate for the operator norm of L_{A}. Given any matrix A, let $S(A)$ denote the class of all matrices that are obtained by rearranging the rows of A. We also write $\sup _{N}^{*}$ for the supremum taken over all finite subsets N of \mathbb{N}.

Theorem 2.2. Let X be a BK space. Then
(a) We have $A \in(X, n(\phi))$ if and only if

$$
\begin{equation*}
\|A\|_{(X, n(\phi))}=\sup _{B \in S(A)} \sup _{N}^{*}\left\|\sum_{n \in N} B_{n} \Delta \phi_{n}\right\|_{X}^{*}<\infty \tag{2.3}
\end{equation*}
$$

(b) If $A \in(X, n(\phi))$, then

$$
\begin{equation*}
\|A\|_{(X, n(\phi))} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{(X, n(\phi))} \tag{2.4}
\end{equation*}
$$

Proof. (a) This is a special case of [2, Theorem 2].
(b) If $A \in(X, n(\phi))$, then $L_{A} \in \mathcal{B}(X, n(\phi))$. Given $x \in X$, we write $y=A x$ and observe that $v \in S(y)$ if and only if $v=B x$ for some $B \in S(A)$, and so

$$
\|A x\|_{n(\phi)}=\sup _{B \in S(A)} \sum_{n=1}^{\infty}\left|B_{n} x\right| \Delta \phi_{n}
$$

If $A \in(X, n(\phi))$, then $L_{A} \in \mathcal{B}(X, n(\phi))$, and so for all $m \in \mathbb{N}$, all subsets N_{m} of $\{1,2, \ldots, m\}$, all $B \in S(A)$ and all $x \in S_{X}$

$$
\left|\sum_{k=1}^{\infty}\left(\sum_{n \in N_{m}} b_{n k} \Delta \phi_{n}\right) x_{k}\right| \leq \sum_{n=1}^{m}\left|B_{n} x \Delta \phi_{n}\right| \leq\left\|L_{A}(x)\right\|_{n(\phi)} \leq\left\|L_{A}\right\| .
$$

This clearly implies

$$
\left\|\sum_{n \in N_{m}} B_{n} \Delta \phi_{n}\right\|_{X}^{*} \leq\left\|L_{A}\right\|
$$

for all $m \in \mathbb{N}$, all subsets N_{m} of $\{1,2, \ldots, m\}$ and all $B \in S(A)$, and consequently

$$
\|A\|_{(X, n(\phi))}=\sup _{B \in S(A)} \sup _{N}^{*}\left\|\sum_{n \in N} B_{n} \Delta \phi_{n}\right\|_{X}^{*} \leq\left\|L_{A}\right\|
$$

the first inequality in (2.4). Furthermore, it follows by the well-known inequality in ([4]) that

$$
\sum_{n=1}^{m}\left|B_{n} x \Delta \phi_{n}\right| \leq 4 \cdot \max _{N_{m} \subset\{1, \ldots, m\}}\left|\sum_{n \in N_{m}} B_{n} x \Delta \phi_{n}\right|
$$

$$
\leq 4 \cdot \max _{N_{m} \subset\{1, \ldots, m\}}\left\|\sum_{n \in N_{m}} B_{n} \Delta \phi_{n}\right\|_{X}^{*} \leq 4 \cdot\|A\|_{(X, n(\phi))}
$$

for all $m \in \mathbb{N}$, all $B \in S(A)$ and all $x \in S_{X}$. This implies $\left\|L_{A}(x)\right\|_{n(\phi)} \leq$ $4 \cdot\|A\|_{(X, n(\phi))}$ for all $x \in S_{X}$, and then $\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{(X, n(\phi))}$, the second inequality in (2.4).

Now we characterize the classes $(m(\phi), Y)$ and $(n(\phi), Y)$ where $Y=\ell_{\infty}$ or $Y=\ell_{1}$, and establish estimates for the operator norms $\left\|L_{A}\right\|$. Let N be finite subset of \mathbb{N} and A be an infinite matrix then we write $b^{(A ; N)}$ for the sequence with

$$
b_{k}^{(A ; N)}=\sum_{n \in N} a_{n k} \quad(k=1,2, \ldots)
$$

Theorem 2.3. (a) We have $A \in\left(m(\phi), \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{\left(m(\phi), \ell_{\infty}\right)}=\sup _{n}\left(\sup _{u \in S\left(A_{n}\right)} \sum_{k=1}^{\infty}\left|u_{k}\right| \Delta \phi_{k}\right)<\infty \tag{2.5}
\end{equation*}
$$

furthermore, if $A \in\left(m(\phi), \ell_{\infty}\right)$, then

$$
\begin{equation*}
\left\|L_{A}\right\|=\|A\|_{\left(m(\phi), \ell_{\infty}\right)} \tag{2.6}
\end{equation*}
$$

(b) We have $A \in\left(n(\phi), \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{\left(n(\phi), \ell_{\infty}\right)}=\sup _{n}\left(\sup _{s \geq 1} \sup _{\sigma \in \mathcal{C}_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|a_{n k}\right|\right)<\infty \tag{2.7}
\end{equation*}
$$

furthermore, if $A \in\left(n(\phi), \ell_{\infty}\right)$, then

$$
\begin{equation*}
\left\|L_{A}\right\|=\|A\|_{\left(n(\phi), \ell_{\infty}\right)} \tag{2.8}
\end{equation*}
$$

(c) We have $A \in\left(m(\phi), \ell_{1}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{\left(m(\phi), \ell_{1}\right)}=\sup _{N}^{*}\left\|b^{(A ; N)}\right\|_{n(\phi)}=\sup _{N}^{*}\left(\sup _{u \in S\left(b^{(A ; N)}\right.} \sum_{k=1}^{\infty}\left|u_{k}\right| \Delta \phi_{k}\right)<\infty \tag{2.9}
\end{equation*}
$$

furthermore, if $A \in\left(m(\phi), \ell_{1}\right)$, then there are absolute constants K_{1} and K_{2} such that

$$
\begin{equation*}
K_{1} \cdot\|A\|_{\left(m(\phi), \ell_{1}\right)} \leq\left\|L_{A}\right\| \leq K_{2} \cdot\|A\|_{\left(m(\phi), \ell_{1}\right)} . \tag{2.10}
\end{equation*}
$$

(d) We have $A \in\left(n(\phi), \ell_{1}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{\left(n(\phi), \ell_{1}\right)}=\sup _{N}^{*}\left\|b^{(A ; N)}\right\|_{m(\phi)}=\sup _{N}^{*}\left(\sup _{s \geq 1} \sup _{\sigma \in \mathcal{C}_{s}}\left(\frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|b_{k}^{(A ; N)}\right|\right)\right)<\infty \tag{2.11}
\end{equation*}
$$

furthermore, if $A \in\left(n(\phi), \ell_{1}\right)$, then there are absolute constants K_{1} and K_{2} such that

$$
\begin{equation*}
K_{1} \cdot\|A\|_{\left(n(\phi), \ell_{1}\right)} \leq\left\|L_{A}\right\| \leq K_{2} \cdot\|A\|_{\left(n(\phi), \ell_{1}\right)} \tag{2.12}
\end{equation*}
$$

Proof. Since $m(\phi)$ and $n(\phi)$ are $B K$ spaces, so are $(m(\phi))^{\beta}$ with $\|\cdot\|_{m(\phi)}^{*}$ and $(n(\phi))^{\beta}$ with $\|\cdot\|_{n(\phi)}^{*}\left([8\right.$, Theorem 4.3.15, p. 64] $)$; also since $(m(\phi))^{\beta}=n(\phi)$ ([5, Lemma 8]) and $(n(\phi))^{\beta}=m(\phi)([5$, Lemma 9$])$, the norms $\|\cdot\|_{m(\phi)}^{*}$ and $\|\cdot\|_{n(\phi)}$, and the norms $\|\cdot\|_{n(\phi)}^{*}$ and $\|\cdot\|_{m(\phi)}$ are equivalent on $\left.(m(\phi))^{\beta}\right)$, and on $(n(\phi))^{\beta}([8$, Corollary 4.2 .4, p. 56]).

Thus Parts (a) and (b) are an immediate consequence of [3, Theorem 1.23, p. 155], and Parts (c) and (d) are an immediate consequence of [1, Satz 1].

We obtain the characterizations of the classes $\left(\ell_{p}, m(\phi)\right)$ and $\left(\ell_{p}, n(\phi)\right)$ for $1 \leq p \leq \infty$, and estimates for the operator norms of L_{A} as an immediate consequence of Theorems 2.1 and 2.2.

Corollary 2.4. Let $1 \leq p \leq \infty$. Then
(a) We have $A \in\left(\ell_{p}, m(\phi)\right)$ if and only if

$$
\|A\|_{\left(\ell_{p}, m(\phi)\right)}= \begin{cases}\sup _{t \geq 1} \sup _{\tau \in \mathcal{C}_{t}}\left(\frac{1}{\phi_{t}} \sup _{k}\left|\sum_{n \in \tau} a_{n k}\right|\right)<\infty & (p=1) \tag{2.13}\\ \sup _{t \geq 1} \sup _{\tau \in \mathcal{C}_{t}}\left(\frac{1}{\phi_{t}}\left(\sum_{k=1}^{\infty}\left|\sum_{n \in \tau} a_{n k}\right|^{q}\right)^{1 / q}\right)<\infty & (1<p \leq \infty)\end{cases}
$$

furthermore, if $A \in\left(\ell_{p}, m(\phi)\right)$, then

$$
\begin{equation*}
\|A\|_{\left(\ell_{p}, m(\phi)\right)} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{\left(\ell_{p}, m(\phi)\right)} \tag{2.14}
\end{equation*}
$$

(b) We have $A \in\left(\ell_{p}, n(\phi)\right)$ if and only if
$\|A\|_{\left(\ell_{p}, n(\phi)\right)}=\left\{\begin{array}{lll}\sup _{B \in S(A)} \sup _{N}^{*}\left(\sup _{k}\left|\sum_{n \in N} b_{n k} \Delta \phi_{n}\right|\right)<\infty & (p=1) \\ \sup _{B \in S(A)} \sup _{N}^{*}\left(\sum_{k=1}^{\infty}\left|\sum_{n \in N} b_{n k} \Delta \phi_{n}\right|^{q}\right)^{1 / q}<\infty & (1<p \leq \infty) ;\end{array}\right.$
furthermore, if $A \in\left(\ell_{p}, n(\phi)\right)$, then

$$
\begin{equation*}
\|A\|_{\left(\ell_{p}, n(\phi)\right)} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{\left(\ell_{p}, n(\phi)\right)} \tag{2.16}
\end{equation*}
$$

Proof. Since ℓ_{p}^{*} and ℓ_{q} are norm isomorphic for $1 \leq p<\infty$, and $\|\cdot\|_{\ell_{\infty}}^{*}=\|\cdot\|_{1}$ on ℓ_{∞}^{β}, Parts (a) and (b) follow from Theorems 2.1 and 2.2 by replacing the norm $\|\cdot\|_{X}^{*}$ in (2.1)-(2.4) by $\|\cdot\|_{q}(1 \leq q \leq \infty)$.

Finally we characterize the classes $\left(m(\phi), \ell_{p}\right)$ and $\left(n(\phi), \ell_{p}\right)$ for $1<p<\infty$, and give estimates for the norms of L_{A}. Given any infinite matrix A, we denote its transpose by A^{t}.

Corollary 2.5. Let $1<p<\infty$. Then
(a) We have $A \in\left(m(\phi), \ell_{p}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{\left(m(\phi), \ell_{p}\right)}=\sup _{B \in S\left(A^{t}\right)} \sup _{K}^{*}\left(\sum_{n=1}^{\infty}\left|\sum_{k \in K} b_{n k} \Delta \phi_{k}\right|^{p}\right)^{1 / p}<\infty \tag{2.17}
\end{equation*}
$$

furthermore, if $A \in\left(m(\phi), \ell_{p}\right)$, then

$$
\begin{equation*}
\|A\|_{\left(m(\phi), \ell_{p}\right)} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{\left(m(\phi), \ell_{p}\right)} . \tag{2.18}
\end{equation*}
$$

(b) We have $A \in\left(n(\phi), \ell_{p}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{\left(n(\phi), \ell_{p}\right)}=\sup _{s \geq 1} \sup _{\sigma \in \mathcal{C}_{s}}\left(\frac{1}{\phi_{s}}\left(\sum_{n=1}^{\infty}\left|\sum_{k \in \sigma} a_{n k}\right|^{p}\right)^{1 / p}\right)<\infty ; \tag{2.19}
\end{equation*}
$$

furthermore, if $A \in\left(n(\phi), \ell_{p}\right)$, then

$$
\begin{equation*}
\|A\|_{\left(n(\phi), \ell_{p}\right)} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{\left(n(\phi), \ell_{p}\right)} . \tag{2.20}
\end{equation*}
$$

Proof. The necessity and sufficiency of the conditions in (2.17) and (2.19) follow from [5, Lemma 14] and those in (2.15) and (2.13) in Corollary 2.4, respectively. Also the estimates in (2.18) and (2.20) follow from [7, Lemma 2] and those in (2.16) and (2.14) in Corollary 2.4, respectively.

Remark 2.6. The characterizations of the classes $\left(\ell_{p}, m(\phi)\right)$ in Corollary 2.4(a) and of $\left(n(\phi), \ell_{p}\right)$ in Corollary 2.4(b) can be found in [5, Theorems 1 and 2].

Remark 2.7. The proof of Corollary 2.5 extends to the case $p=1$; hence we obtain alternative characterizations for the classes $\left(m(\phi), \ell_{1}\right)$ and $\left(n(\phi), \ell_{1}\right)$ and estimates for the operator norms from those given Theorem 2.3(c) and (d).

Remark 2.8. We observe that $\|A\|_{\left(X, \ell_{p}\right)}=\left\|A^{t}\right\|_{\left(\ell_{q}, X^{\beta}\right)}$ for $X=m(\phi)$ or $X=$ $n(\phi)$ and $1 \leq p \leq \infty$ (by [5, Lemma 14] and [7, Lemma 2(4)]).

3. Compact operators

Here we give necessary and sufficient conditions for a matrix A to define a compact operator L_{A} between the spaces $\ell_{p}, m(\phi)$ and $n(\phi)$.

We recall that a linear operator from a Banach space X into a Banach space Y is called compact if the domain of L is all of X and, for every bounded sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in X, the sequence $\left(L\left(x_{n}\right)\right)_{n=1}^{\infty}$ has a convergent subsequence in Y. We write $\mathcal{C}(X, Y)$ for the class of all compact operators from X into Y.

We note that the norms of the $B K$ spaces ℓ_{p} for $1 \leq p \leq \infty, m(\phi)$ and $n(\phi)$ satisfy the condition

$$
\begin{equation*}
\|x\|=\sup _{n}\left\|x^{[n]}\right\| \text { for all } x \in X \tag{3.1}
\end{equation*}
$$

this is trivial for ℓ_{p}, and the result for $m(\phi)$ and $n(\phi)$ can be found in $[6, \mathrm{p}$. 64].

First we establish necessary and sufficient conditions on the entries of a matrix $A \in\left(m(\phi), \ell_{1}\right)$ or $A \in\left(n(\phi), \ell_{1}\right)$ for L_{A} to be a compact operator.

Given an infinite matrix $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ and $m \in \mathbb{N}$, we write $A^{[m]}=$ $\left(a_{n k}^{[m]}\right)_{n, k=1}^{\infty}$ for the matrix with the rows $A_{n}^{[m]}=A_{n}$ for $1 \leq n \leq m$ and $A_{n}^{[m]}=0$ for $n \geq m+1$; also let $C^{[m]}=A-A^{[m]}$. We denote by $\sup _{N_{m}}^{*}$ the supremum taken over all finite subsets of integers greater than or equal to $m+1$.

Theorem 3.1. (a) If $A \in\left(m(\phi), \ell_{1}\right)$, then $L_{A} \in \mathcal{C}\left(m(\phi), \ell_{1}\right)$ if and only if (3.2)

$$
\lim _{m \rightarrow \infty}\left(\sup _{N_{m}}^{*}\left\|b^{\left(A ; N_{m}\right)}\right\|_{n(\phi)}\right)=\lim _{m \rightarrow \infty}\left(\sup _{N_{m}}^{*} \sup _{u \in S\left(b\left(A ; N_{m}\right)\right.} \sum_{k=1}^{\infty}\left|u_{k}\right| \Delta \phi_{k}\right)=0
$$

(b) If $A \in\left(n(\phi), \ell_{1}\right)$, then $L_{A} \in \mathcal{C}\left(n(\phi), \ell_{1}\right)$ if and only if

$$
\begin{align*}
& \lim _{m \rightarrow \infty}\left(\sup _{N_{m}}^{*}\left\|b^{\left(A ; N_{m}\right)}\right\|_{m(\phi)}\right) \\
= & \lim _{m \rightarrow \infty}\left(\sup _{N_{m}}^{*} \sup _{s \geq 1} \sup _{\sigma \in \mathcal{C}_{s}}\left(\frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|\sum_{n \in N_{m}} a_{n k}\right|\right)\right)=0 . \tag{3.3}
\end{align*}
$$

Proof. We assume $A \in\left(X, \ell_{1}\right)$ where $X=m(\phi)$ or $X=n(\phi)$. Since ℓ_{1} has $A K, L_{A} \in \mathcal{C}\left(X, \ell_{1}\right)$ is equivalent to

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|C^{[m]}\right\|_{\left(X, \ell_{1}\right)}=\lim _{m \rightarrow \infty} \sup _{N}^{*}\left\|b^{\left(C^{[m]} ; N\right)}\right\|_{X^{\beta}}=0 \tag{3.4}
\end{equation*}
$$

by [7, Theorem 2(c), (8)] and (2.9)-(2.12) in Parts (c) and (d) of Theorem 2.3.
Let $m \in \mathbb{N}$ be given, N be a finite subset of \mathbb{N} and $N_{m}^{\prime}=\{n \in N: n \geq m+1\}$. Then we obviously have

$$
b_{k}^{\left(C^{[m]} ; N\right)}=\sum_{n \in N} c_{n k}^{[m]}=\sum_{n \in N_{m}^{\prime}} a_{n k}=b_{k}^{\left(A ; N_{m}\right)} \text { for all } k,
$$

hence

$$
\sup _{N}^{*}\left\|b^{\left(C^{[m]} ; N\right)}\right\|_{X^{\beta}}=\sup _{N_{m}}^{*}\left\|b^{\left(A ; N_{m}\right)}\right\|_{X^{\beta}}
$$

and the conditions in (3.2) and (3.3) follow from (3.4).
Theorem 3.2. Let $1<p<\infty$.
(a) If $A \in\left(m(\phi), \ell_{p}\right)$, then $L_{A} \in \mathcal{C}\left(m(\phi), \ell_{p}\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{B \in S\left(A^{t}\right)} \sup _{K}^{*}\left(\sum_{n=m+1}^{\infty}\left|\sum_{k \in K} b_{n k} \Delta \phi_{k}\right|^{p}\right)^{1 / p}=0 \tag{3.5}
\end{equation*}
$$

(b) If $A \in\left(n(\phi), \ell_{p}\right)$, then $L_{A} \in \mathcal{C}\left(n(\phi), \ell_{p}\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\sup _{s \geq 1} \sup _{\sigma \in \mathcal{C}_{s}}\left(\frac{1}{\phi_{s}} \sum_{n=m+1}^{\infty}\left|\sum_{k \in \sigma} a_{n k}\right|^{p}\right)^{1 / p}\right)=0 \tag{3.6}
\end{equation*}
$$

Proof. We assume $A \in\left(X, \ell_{p}\right)(1<p<\infty)$ where $X=m(\phi)$ or $X=n(\phi)$. Since ℓ_{p} has $A K$, again by [7, Theorem 2(c), (8)], $L_{A} \in \mathcal{C}\left(X, \ell_{p}\right)$ is equivalent to

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|C^{[m]}\right\|_{\left(X, \ell_{p}\right)}=0 \tag{3.7}
\end{equation*}
$$

We write $D^{[m]}=\left(C^{[m]}\right)^{t}$. Then $D^{[m]}$ is the matrix with the columns $\left(D^{[m]}\right)^{(k)}$ $=0$ for $1 \leq k \leq m$ and $\left(D^{[m]}\right)^{(k)}=A_{k}=\left(a_{k n}\right)_{n=1}^{\infty}$ for $k \geq m+1$. Now the conditions in (3.5) and (3.6) follow from (3.7) by Remark 2.8 and (2.19) and (2.20) in Corollary 2.5 for $X=m(\phi)$, and (2.17) and (2.18) in Corollary 2.5 for $X=n(\phi)$.

Remark 3.3. It is obvious from Remark 2.7 that the result of Theorem 3.2 extends to $p=1$ and so we obtain alternative characterizations for the classes $\left(m(\phi), \ell_{1}\right)$ and $\left(n(\phi), \ell_{1}\right)$ from those given in Theorem 3.1.

Now we establish necessary and sufficient conditions for the entries of a matrix $A \in\left(\ell_{p}, m(\phi)\right)$ or $A \in\left(\ell_{p}, n(\phi)\right)(1<p \leq \infty)$ for L_{A} to be a compact operator.

Given an infinite matrix $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ and $m \in \mathbb{N}$, we write $A^{\langle m\rangle}=$ $\left(a_{n k}^{\langle m\rangle}\right)_{n, k=1}^{\infty}$ for the matrix with the columns $\left(A^{\langle m\rangle}\right)^{(k)}=A^{(k)}$ for $1 \leq k \leq m$ and $\left(A^{\langle m\rangle}\right)^{(k)}=0$ for $k \geq m+1$; also let $C^{\langle m\rangle}=A-A^{\langle m\rangle}$.

Theorem 3.4. Let $1<p \leq \infty$.
(a) If $A \in\left(\ell_{p}, m(\phi)\right)$, then $L_{A} \in \mathcal{C}\left(\ell_{p}, m(\phi)\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\sup _{t \geq 1} \sup _{\tau \in \mathcal{C}_{t}} \frac{1}{\phi_{t}}\left(\sum_{k=m+1}^{\infty}\left|\sum_{n \in \tau} a_{n k}\right|^{q}\right)^{1 / q}\right)=0 \tag{3.8}
\end{equation*}
$$

(b) If $A \in\left(\ell_{p}, n(\phi)\right)$, then $L_{A} \in \mathcal{C}\left(\ell_{p}, n(\phi)\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\sup _{B \in S(A)} \sup _{N}^{*}\left(\sum_{k=m+1}^{\infty}\left|\sum_{n \in N} b_{n k} \Delta \phi_{n}\right|^{q}\right)^{1 / q}\right)=0 \tag{3.9}
\end{equation*}
$$

Proof. We assume $A \in\left(\ell_{p}, Y\right)$ where $Y=m(\phi)$ or $Y=n(\phi)$.
Since $\ell_{p}^{\beta}=\ell_{q}$ has $A K$ for $1<p \leq \infty$, that is, for $1 \leq q<\infty$, it follows from [7, Corollary, p. 84] that $L_{A} \in \mathcal{C}\left(\ell_{p}, Y\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|C^{\langle m\rangle}\right\|_{\left(\ell_{p}, Y\right)}=0 . \tag{3.10}
\end{equation*}
$$

Now the conditions in (3.8) and (3.9) are immediate consequences of (2.13)(2.16) in Corollary 2.4.

Remark 3.5. Let $1<p<\infty$ and $X=m(\phi)$ or $X=n(\phi)$. It follows from [5, Lemma 14] and [7, Theorem 3] by [7, Lemma 2(4)] that if $A \in\left(X, \ell_{p}\right)$, then $L_{A} \in \mathcal{C}\left(X, \ell_{p}\right)$ if and only if $L_{A^{t}} \in C\left(\ell_{q}, X^{\beta}\right)$; also $\left\|L_{A^{t}}\right\|=\left\|L_{A}\right\|$ by Remark
2.8. Thus the conditions in (3.5) and (3.6) can immediately be obtained from those in (3.9) and (3.8), respectively, and vice versa.

In the sequel we always assume that

$$
\begin{equation*}
\phi_{k} \rightarrow \infty \text { and } \frac{k}{\phi_{k}} \rightarrow \infty \quad(k \rightarrow \infty) \tag{3.11}
\end{equation*}
$$

since $m(\phi)=\ell_{1}$ (and consequently $n(\phi)=\ell_{\infty}$) if and only if $\lim _{k \rightarrow \infty} \phi_{k}<\infty$, and $m(\phi)=\ell_{\infty}$ (and consequently $n(\phi)=\ell_{1}$) if and only if $\lim _{k \rightarrow \infty}\left(k / \phi_{k}\right)=0$ ([5, Lemma 5]).
Theorem 3.6. (a) If $A \in\left(m(\phi), \ell_{\infty}\right)$, then $L_{A} \in \mathcal{C}\left(m(\phi), \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\sup _{n} \sup _{u \in S\left(A_{n}\right)} \sum_{k=m+1}^{\infty}\left|u_{k}\right| \phi_{k}\right)=0 \tag{3.12}
\end{equation*}
$$

(b) If $A \in\left(\ell_{1}, n(\phi)\right)$, then $L_{A} \in \mathcal{C}\left(\ell_{1}, n(\phi)\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\sup _{k} \sup _{u \in S\left(A^{(k)}\right)} \sum_{n=m+1}^{\infty}\left|u_{n}\right| \phi_{n}\right)=0 \tag{3.13}
\end{equation*}
$$

Proof. (a) Since we assume (3.11), $(m(\phi))^{\beta}=n(\phi)$ has $A K$ by [6, Theorem 8 (c)], and it follows from [7, Corollary, p. 84] and (2.6) in Theorem 2.3(a) that $L_{A} \in \mathcal{C}\left(m(\phi), \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|C^{\langle m\rangle}\right\|_{\left(m(\phi), \ell_{\infty}\right)}=0 \tag{3.14}
\end{equation*}
$$

Now (3.12) is an immediate consequence of (3.14) and (2.5) in Theorem 2.3 (a).
(b) Let $A \in\left(\ell_{1}, n(\phi)\right)$. As in Remark 3.5 it follows that $L_{A} \in \mathcal{C}\left(\ell_{1}, n(\phi)\right)$ if and only if $L_{A^{t}} \in \mathcal{C}\left(m(\phi), \ell_{\infty}\right)$; also $\left\|L_{A}\right\|=\left\|L_{A^{t}}\right\|$. So (3.13) is obtained from (3.12) with A replaced by A^{t} and n and k interchanged.

References

[1] E. Malkowsky, Klassen von Matrixabbildungen in paranormierten $F K-$ Räumen, Analysis 7 (1987), no. 3-4, 275-292.
[2] E. Malkowsky and Mursaleen, Matrix transformations between FK-spaces and the sequence spaces $m(\phi)$ and $n(\phi)$, J. Math. Anal. Appl. 196 (1995), no. 2, 659-665.
[3] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measures of noncompactness, Zb. Rad. (Beogr.) 9(17) (2000), 143-234.
[4] A. Peyerimhoff, Über ein Lemma von Herrn Chow, J. London Math. Soc. 32 (1957), 33-36.
[5] W. L. C. Sargent, Some sequence spaces related to the ℓ^{p} spaces, J. London Math. Soc. 35 (1960), 161-171.
[6] \qquad , On sectionally bounded BK spaces, Math. Z. 83 (1964), 57-66.
[7] \qquad , On compact matrix transformations between sectionally bounded BK-spaces, J. London Math. Soc. 41 (1966), 70-87.
[8] A. Wilansky, Summability through Functional Analysis, Mathematics Studies 85, NorthHolland, Amsterdam, New York, Oxford, 1984.

Eberhard Malkowsky
Department of Mathematics
University of Giessen
Arndtstrasse 2, D-35392 Giessen, Germany
And
Department of Mathematics
Faculty of Science
Fatih University
34500 BüYÜkÇekmece, Istanbul, Turkey
E-mail address: Eberhard.Malkowsky@math.uni-giessen.de, ema@Bankerinter.net
Mohammad Mursaleen
Department of Mathematics
Aligarh Muslim University
Aligarh-202002, India
E-mail address: mursaleenm@gmail.com

