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COMPACT MATRIX OPERATORS BETWEEN

THE SPACES m(ϕ), n(ϕ) AND ℓp

Eberhard Malkowsky and Mohammad Mursaleen

Abstract. We give the characterizations of the classes of matrix trans-
formations (m(ϕ), ℓp), (n(ϕ), ℓp) ([5, Theorem 2]), (ℓp,m(ϕ)) ([5, Theo-
rem 1]) and (ℓp, n(ϕ)) for 1 ≤ p ≤ ∞, establish estimates for the norms

of the bounded linear operators defined by those matrix transformations,
and characterize the corresponding subclasses of compact matrix opera-
tors.

1. Introduction and notations

IfX and Y are Banach spaces, then SX = {x ∈ X : ∥x∥ = 1} and B̄X = {x ∈
X : ∥x∥ ≤ 1} are the unit sphere and the closed unit ball in X, and B(X,Y )
is the set of all bounded linear operators L : X → Y with the operator norm
∥ · ∥ defined by ∥L∥ = sup{∥L(x)∥ : x ∈ SX}; X∗ = B(X,C) is the continuous
dual of X, that is, the space of all continuous linear functionals on X with the
norm defined by ∥f∥ = sup{|f(x)| : x ∈ SX} for all f ∈ X∗.

We write ω, and ℓ∞ and ϕ for the sets of all complex sequences x = (xk)
∞
k=1,

and of all bounded and finite sequences, respectively, and ℓp = {x ∈ ω :∑∞
k=1|xk|p < ∞} for 1 ≤ p < ∞; furthermore, cs is the set of all convergent

series. By e and e(n) (n = 1, 2, . . . ) we denote the sequences with ek = 1 for all

k, and e
(n)
n = 1 and e

(n)
k = 0 (k ̸= n). If x = (xk)

∞
k=1 is a sequence and n ∈ N

then we write x[n] =
∑n

k=1 xke
(k) for the n-section of x.

A BK space X is a Banach sequence space such that the coordinate maps
Pn : X → C with Pn(x) = xn (x = (xk)

∞
k=1 ∈ X) are continuous for each n ∈ N.

A BK space X ⊃ ϕ is said to have AK, if every sequence x = (xk)
∞
k=1 ∈ X

has a unique representation x = limn→∞ x[n].
Let x and y be sequences, X and Y be subsets of ω and A = (ank)

∞
n,k=1 be

an infinite matrix of complex numbers. Then Xβ = {a ∈ ω : (akxk) ∈ cs for all
x ∈ X} is the β-dual of X. By An = (ank)

∞
k=1 and A(k) = (ank)

∞
n=1, we denote

the sequences in the nth row and the kth column of the matrix A. We write
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Anx =
∑∞

k=1ankxk, Ax = (Anx)
∞
n=1 (provided all the series Anx converge),

and (X,Y ) for the class of all matrices A such that An ∈ Xβ for all n and
Ax ∈ Y for all x ∈ X.

Let X and Y be BK spaces. Since matrix maps between BK spaces are
continuous ([8, Theorem 4.2.8, p. 57]), we have (X,Y ) ⊂ B(X,Y ), that is,
every matrix A ∈ (X,Y ) defines an operator LA ∈ B(X,Y ) where LA(x) = Ax
for all x ∈ X.

The operator ∆ : ω → ω is defined by ∆x = (∆xk) = (xk−xk−1)
∞
k=1 (x ∈ ω)

where we suppose x−1 = 0. Given any sequence x, we denote by S(x) the class
of all sequences that are rearrangements of x. Let C denote the set of all finite
subsets of N. Given any set σ ∈ C, we denote by c(σ) the sequence with

cn(σ) =

{
1 (n ∈ σ)

0 (n ̸∈ σ).

For any s ∈ N, Cs is the class of all σ ∈ C such that
∑∞

n=1 cn(σ) ≤ s. The set
Φ consists of all real sequences (ϕk)

∞
k=1 such that

ϕ1 > 0, ∆ϕk ≥ 0 and ∆

(
ϕk

k

)
≤ 0 (k = 1, 2, . . . ).

Sargent ([5]) defined and studied the following sequence spaces for ϕ ∈ Φ

m(ϕ) =

{
x ∈ ω : sup

s≥1
sup
σ∈Cs

(
1

ϕs

∑
k∈σ

|xk|

)
< ∞

}

and

n(ϕ) =

{
x ∈ ω : sup

u∈S(x)

( ∞∑
k=1

|uk|∆ϕk

)
< ∞

}

which are BK spaces ([5, (iii) and (iv), p. 162]) with their natural norms defined
by

∥x∥m(ϕ) = sup
s≥1

sup
σ∈Cs

(
1

ϕs

∑
k∈σ

|xk|

)
and ∥x∥n(ϕ) = sup

u∈S(x)

( ∞∑
k=1

|uk|∆ϕk

)
.

We give necessary and sufficient conditions for infinite matrices A to belong
to any of the classes (m(ϕ), ℓp), (n(ϕ), ℓp) ([5, Theorem 2]), (ℓp,m(ϕ)) ([5,
Theorem 1]) and (ℓp, n(ϕ)) for 1 ≤ p ≤ ∞, and establish estimates for the
norms of the corresponding operators LA. Finally we characterize the compact
operators LA defined by the matrices A in the classes above, except for the
cases (ℓ1,m(ϕ)) and (n(ϕ), ℓ∞).



COMPACT MATRIX OPERATORS 1095

2. Matrix transformations on and into m(ϕ) and n(ϕ)

Here we give the characterizations of classes of matrix transformations A
between the spaces ℓp (1 ≤ p ≤ ∞) and m(ϕ) and n(ϕ) some of which can be
found in [5, Theorems 1 and 2], and estimates for the operator norms of LA.

Throughout let q be the conjugate number of p, that is, q = ∞ for p = 1,
q = p/(p− 1) for 1 < p < ∞ and q = 1 for p = ∞.

Let X be a BK space and a ∈ ω. We write

∥a∥∗ = ∥a∥∗X = sup
x∈SX

∣∣∣∣∣
∞∑
k=1

akxk

∣∣∣∣∣
provided the expression on the righthand side exists and is finite which is the
case whenever a ∈ Xβ ([8, Theorem 7.2.9, p. 107]).

First we give the characterization of the class (X,m(ϕ)) where X is any BK
space, and establish an estimate for the operator norm of LA.

Theorem 2.1. Let X be a BK space. Then
(a) We have A ∈ (X,m(ϕ)) if and only if

(2.1) ∥A∥(X,m(ϕ)) = sup
t≥1

sup
τ∈Ct

(
1

ϕt

∥∥∥∥∥∑
n∈τ

An

∥∥∥∥∥
∗

X

)
< ∞.

(b) If A ∈ (X,m(ϕ)), then

(2.2) ∥A∥(X,m(ϕ)) ≤ ∥LA∥ ≤ 4 · ∥A∥(X,m(ϕ)).

Proof. (a) This is a special case of [2, Theorem 1].
(b) If A ∈ (X,m(ϕ)), then LA ∈ B(X,m(ϕ)), and so for all x ∈ SX , τ ∈ Ct

and t ≥ 1

1

ϕt

∣∣∣∣∣
∞∑
k=1

(∑
n∈τ

ank

)
xk

∣∣∣∣∣ ≤ 1

ϕt

∑
n∈τ

|Anx| ≤ ∥LA(x)∥m(ϕ) ≤ ∥LA∥.

This clearly implies

1

ϕt

∥∥∥∥∥∑
n∈τ

An

∥∥∥∥∥
∗

X

≤ ∥LA∥ for all τ ∈ Ct and τ ≥ 1,

and consequently ∥A∥(X,m(ϕ)) ≤ ∥LA∥, the first inequality in (2.2).
Furthermore, it follows from a well-known inequality ([4]) for all x ∈ SX , τ ∈ Ct
and τ ≥ 1 ∑

n∈τ

|Anx| ≤ 4 ·max
τ ′⊂τ

∣∣∣∣∣∑
n∈τ ′

Anx

∣∣∣∣∣ ≤ 4 ·max
τ ′⊂τ

∥∥∥∥∥∑
n∈τ ′

An

∥∥∥∥∥
∗

X

,

and this implies
1

ϕt

∑
n∈τ

|Anx| ≤ 4 · ∥A∥(X,m(ϕ)),
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hence

∥LA(x)∥ ≤ 4 · ∥A∥(X,m(ϕ)) for all x ∈ SX ,

and finally ∥LA∥ ≤ 4 · ∥A∥(X,m(ϕ)), the second inequality in (2.2). □

Now we give the characterization of the class (X,n(ϕ)) where X is any BK
space, and establish an estimate for the operator norm of LA. Given any matrix
A, let S(A) denote the class of all matrices that are obtained by rearranging the
rows of A. We also write sup∗N for the supremum taken over all finite subsets
N of N.

Theorem 2.2. Let X be a BK space. Then
(a) We have A ∈ (X,n(ϕ)) if and only if

(2.3) ∥A∥(X,n(ϕ)) = sup
B∈S(A)

sup∗N

∥∥∥∥∥∑
n∈N

Bn∆ϕn

∥∥∥∥∥
∗

X

< ∞.

(b) If A ∈ (X,n(ϕ)), then

(2.4) ∥A∥(X,n(ϕ)) ≤ ∥LA∥ ≤ 4 · ∥A∥(X,n(ϕ)).

Proof. (a) This is a special case of [2, Theorem 2].
(b) If A ∈ (X,n(ϕ)), then LA ∈ B(X,n(ϕ)). Given x ∈ X, we write y = Ax

and observe that v ∈ S(y) if and only if v = Bx for some B ∈ S(A), and so

∥Ax∥n(ϕ) = sup
B∈S(A)

∞∑
n=1

|Bnx|∆ϕn.

If A ∈ (X,n(ϕ)), then LA ∈ B(X,n(ϕ)), and so for all m ∈ N, all subsets Nm

of {1, 2, . . . ,m}, all B ∈ S(A) and all x ∈ SX∣∣∣∣∣
∞∑
k=1

( ∑
n∈Nm

bnk∆ϕn

)
xk

∣∣∣∣∣ ≤
m∑

n=1

|Bnx∆ϕn| ≤ ∥LA(x)∥n(ϕ) ≤ ∥LA∥.

This clearly implies ∥∥∥∥∥ ∑
n∈Nm

Bn∆ϕn

∥∥∥∥∥
∗

X

≤ ∥LA∥

for all m ∈ N, all subsets Nm of {1, 2, . . . ,m} and all B ∈ S(A), and conse-
quently

∥A∥(X,n(ϕ)) = sup
B∈S(A)

sup∗N

∥∥∥∥∥∑
n∈N

Bn∆ϕn

∥∥∥∥∥
∗

X

≤ ∥LA∥,

the first inequality in (2.4). Furthermore, it follows by the well-known inequal-
ity in ([4]) that

m∑
n=1

|Bnx∆ϕn| ≤ 4 · max
Nm⊂{1,...,m}

∣∣∣∣∣ ∑
n∈Nm

Bnx∆ϕn

∣∣∣∣∣
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≤ 4 · max
Nm⊂{1,...,m}

∥∥∥∥∥ ∑
n∈Nm

Bn∆ϕn

∥∥∥∥∥
∗

X

≤ 4 · ∥A∥(X,n(ϕ))

for all m ∈ N, all B ∈ S(A) and all x ∈ SX . This implies ∥LA(x)∥n(ϕ) ≤
4 · ∥A∥(X,n(ϕ)) for all x ∈ SX , and then ∥LA∥ ≤ 4 · ∥A∥(X,n(ϕ)), the second
inequality in (2.4). □

Now we characterize the classes (m(ϕ), Y ) and (n(ϕ), Y ) where Y = ℓ∞ or
Y = ℓ1, and establish estimates for the operator norms ∥LA∥. Let N be finite
subset of N and A be an infinite matrix then we write b(A;N) for the sequence
with

b
(A;N)
k =

∑
n∈N

ank (k = 1, 2, . . . ).

Theorem 2.3. (a) We have A ∈ (m(ϕ), ℓ∞) if and only if

(2.5) ∥A∥(m(ϕ),ℓ∞) = sup
n

(
sup

u∈S(An)

∞∑
k=1

|uk|∆ϕk

)
< ∞;

furthermore, if A ∈ (m(ϕ), ℓ∞), then

(2.6) ∥LA∥ = ∥A∥(m(ϕ),ℓ∞).

(b) We have A ∈ (n(ϕ), ℓ∞) if and only if

(2.7) ∥A∥(n(ϕ),ℓ∞) = sup
n

(
sup
s≥1

sup
σ∈Cs

1

ϕs

∑
k∈σ

|ank|

)
< ∞;

furthermore, if A ∈ (n(ϕ), ℓ∞), then

(2.8) ∥LA∥ = ∥A∥(n(ϕ),ℓ∞).

(c) We have A ∈ (m(ϕ), ℓ1) if and only if
(2.9)

∥A∥(m(ϕ),ℓ1) = sup∗N

∥∥∥b(A;N)
∥∥∥
n(ϕ)

= sup∗N

(
sup

u∈S(b(A;N))

∞∑
k=1

|uk|∆ϕk

)
< ∞;

furthermore, if A ∈ (m(ϕ), ℓ1), then there are absolute constants K1 and K2

such that

(2.10) K1 · ∥A∥(m(ϕ),ℓ1) ≤ ∥LA∥ ≤ K2 · ∥A∥(m(ϕ),ℓ1).

(d) We have A ∈ (n(ϕ), ℓ1) if and only if
(2.11)

∥A∥(n(ϕ),ℓ1) = sup∗N

∥∥∥b(A;N)
∥∥∥
m(ϕ)

= sup∗N

(
sup
s≥1

sup
σ∈Cs

(
1

ϕs

∑
k∈σ

∣∣∣b(A;N)
k

∣∣∣)) < ∞;

furthermore, if A ∈ (n(ϕ), ℓ1), then there are absolute constants K1 and K2

such that

(2.12) K1 · ∥A∥(n(ϕ),ℓ1) ≤ ∥LA∥ ≤ K2 · ∥A∥(n(ϕ),ℓ1).



1098 E. MALKOWSKY AND M. MURSALEEN

Proof. Since m(ϕ) and n(ϕ) are BK spaces, so are (m(ϕ))β with ∥ · ∥∗m(ϕ) and

(n(ϕ))β with ∥ · ∥∗n(ϕ) ([8, Theorem 4.3.15, p. 64]); also since (m(ϕ))β = n(ϕ)

([5, Lemma 8]) and (n(ϕ))β = m(ϕ) ([5, Lemma 9]), the norms ∥ · ∥∗m(ϕ) and

∥ · ∥n(ϕ), and the norms ∥ · ∥∗n(ϕ) and ∥ · ∥m(ϕ) are equivalent on (m(ϕ))β), and

on (n(ϕ))β ([8, Corollary 4.2.4, p. 56]).
Thus Parts (a) and (b) are an immediate consequence of [3, Theorem 1.23,

p. 155], and Parts (c) and (d) are an immediate consequence of [1, Satz 1]. □

We obtain the characterizations of the classes (ℓp,m(ϕ)) and (ℓp, n(ϕ)) for
1 ≤ p ≤ ∞, and estimates for the operator norms of LA as an immediate
consequence of Theorems 2.1 and 2.2.

Corollary 2.4. Let 1 ≤ p ≤ ∞. Then
(a) We have A ∈ (ℓp,m(ϕ)) if and only if

(2.13)

∥A∥(ℓp,m(ϕ)) =


sup
t≥1

sup
τ∈Ct

(
1

ϕt
sup
k

∣∣∣∣ ∑
n∈τ

ank

∣∣∣∣) < ∞ (p = 1)

sup
t≥1

sup
τ∈Ct

(
1

ϕt

( ∞∑
k=1

∣∣∣∣ ∑
n∈τ

ank

∣∣∣∣q)1/q
)

< ∞ (1 < p ≤ ∞);

furthermore, if A ∈ (ℓp,m(ϕ)), then

(2.14) ∥A∥(ℓp,m(ϕ)) ≤ ∥LA∥ ≤ 4 · ∥A∥(ℓp,m(ϕ)).

(b) We have A ∈ (ℓp, n(ϕ)) if and only if
(2.15)

∥A∥(ℓp,n(ϕ)) =


sup

B∈S(A)

sup∗N

(
sup
k

∣∣∑
n∈N bnk∆ϕn

∣∣) < ∞ (p = 1)

sup
B∈S(A)

sup∗N

( ∞∑
k=1

∣∣∑
n∈N bnk∆ϕn

∣∣q)1/q

< ∞ (1 < p ≤ ∞);

furthermore, if A ∈ (ℓp, n(ϕ)), then

(2.16) ∥A∥(ℓp,n(ϕ)) ≤ ∥LA∥ ≤ 4 · ∥A∥(ℓp,n(ϕ)).

Proof. Since ℓ∗p and ℓq are norm isomorphic for 1 ≤ p < ∞, and ∥ · ∥∗ℓ∞ = ∥ · ∥1
on ℓβ∞, Parts (a) and (b) follow from Theorems 2.1 and 2.2 by replacing the
norm ∥ · ∥∗X in (2.1)-(2.4) by ∥ · ∥q (1 ≤ q ≤ ∞). □

Finally we characterize the classes (m(ϕ), ℓp) and (n(ϕ), ℓp) for 1 < p < ∞,
and give estimates for the norms of LA. Given any infinite matrix A, we denote
its transpose by At.

Corollary 2.5. Let 1 < p < ∞. Then
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(a) We have A ∈ (m(ϕ), ℓp) if and only if

(2.17) ∥A∥(m(ϕ),ℓp) = sup
B∈S(At)

sup∗K

( ∞∑
n=1

∣∣∣∣∣∑
k∈K

bnk∆ϕk

∣∣∣∣∣
p)1/p

< ∞;

furthermore, if A ∈ (m(ϕ), ℓp), then

(2.18) ∥A∥(m(ϕ),ℓp) ≤ ∥LA∥ ≤ 4 · ∥A∥(m(ϕ),ℓp).

(b) We have A ∈ (n(ϕ), ℓp) if and only if

(2.19) ∥A∥(n(ϕ),ℓp) = sup
s≥1

sup
σ∈Cs

 1

ϕs

( ∞∑
n=1

∣∣∣∣∣∑
k∈σ

ank

∣∣∣∣∣
p)1/p

 < ∞;

furthermore, if A ∈ (n(ϕ), ℓp), then

(2.20) ∥A∥(n(ϕ),ℓp) ≤ ∥LA∥ ≤ 4 · ∥A∥(n(ϕ),ℓp).

Proof. The necessity and sufficiency of the conditions in (2.17) and (2.19) follow
from [5, Lemma 14] and those in (2.15) and (2.13) in Corollary 2.4, respectively.
Also the estimates in (2.18) and (2.20) follow from [7, Lemma 2] and those in
(2.16) and (2.14) in Corollary 2.4, respectively. □
Remark 2.6. The characterizations of the classes (ℓp,m(ϕ)) in Corollary 2.4(a)
and of (n(ϕ), ℓp) in Corollary 2.4(b) can be found in [5, Theorems 1 and 2].

Remark 2.7. The proof of Corollary 2.5 extends to the case p = 1; hence we
obtain alternative characterizations for the classes (m(ϕ), ℓ1) and (n(ϕ), ℓ1) and
estimates for the operator norms from those given Theorem 2.3(c) and (d).

Remark 2.8. We observe that ∥A∥(X,ℓp) = ∥At∥(ℓq,Xβ) for X = m(ϕ) or X =

n(ϕ) and 1 ≤ p ≤ ∞ (by [5, Lemma 14] and [7, Lemma 2(4)]).

3. Compact operators

Here we give necessary and sufficient conditions for a matrix A to define a
compact operator LA between the spaces ℓp, m(ϕ) and n(ϕ).

We recall that a linear operator from a Banach space X into a Banach space
Y is called compact if the domain of L is all of X and, for every bounded
sequence (xn)

∞
n=1 in X, the sequence (L(xn))

∞
n=1 has a convergent subsequence

in Y . We write C(X,Y ) for the class of all compact operators from X into Y .
We note that the norms of the BK spaces ℓp for 1 ≤ p ≤ ∞, m(ϕ) and n(ϕ)

satisfy the condition

(3.1) ∥x∥ = sup
n

∥∥∥x[n]
∥∥∥ for all x ∈ X;

this is trivial for ℓp, and the result for m(ϕ) and n(ϕ) can be found in [6, p.
64].

First we establish necessary and sufficient conditions on the entries of a
matrix A ∈ (m(ϕ), ℓ1) or A ∈ (n(ϕ), ℓ1) for LA to be a compact operator.
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Given an infinite matrix A = (ank)
∞
n,k=1 and m ∈ N, we write A[m] =

(a
[m]
nk )∞n,k=1 for the matrix with the rows A

[m]
n = An for 1 ≤ n ≤ m and

A
[m]
n = 0 for n ≥ m + 1; also let C [m] = A − A[m]. We denote by sup∗Nm

the supremum taken over all finite subsets of integers greater than or equal to
m+ 1.

Theorem 3.1. (a) If A ∈ (m(ϕ), ℓ1), then LA ∈ C(m(ϕ), ℓ1) if and only if
(3.2)

lim
m→∞

(
sup∗Nm

∥∥∥b(A;Nm)
∥∥∥
n(ϕ)

)
= lim

m→∞

(
sup∗Nm

sup
u∈S(b(A;Nm))

∞∑
k=1

|uk|∆ϕk

)
= 0.

(b) If A ∈ (n(ϕ), ℓ1), then LA ∈ C(n(ϕ), ℓ1) if and only if

(3.3)

lim
m→∞

(
sup∗Nm

∥∥∥b(A;Nm)
∥∥∥
m(ϕ)

)
= lim

m→∞

(
sup∗Nm

sup
s≥1

sup
σ∈Cs

(
1

ϕs

∑
k∈σ

∣∣∣∣∣ ∑
n∈Nm

ank

∣∣∣∣∣
))

= 0.

Proof. We assume A ∈ (X, ℓ1) where X = m(ϕ) or X = n(ϕ). Since ℓ1 has
AK, LA ∈ C(X, ℓ1) is equivalent to

(3.4) lim
m→∞

∥∥∥C [m]
∥∥∥
(X,ℓ1)

= lim
m→∞

sup∗N

∥∥∥b(C[m];N)
∥∥∥
Xβ

= 0

by [7, Theorem 2(c), (8)] and (2.9)-(2.12) in Parts (c) and (d) of Theorem 2.3.
Letm ∈ N be given, N be a finite subset of N andN ′

m = {n ∈ N : n ≥ m+1}.
Then we obviously have

b
(C[m];N)
k =

∑
n∈N

c
[m]
nk =

∑
n∈N ′

m

ank = b
(A;Nm)
k for all k,

hence

sup∗N

∥∥∥b(C[m];N)
∥∥∥
Xβ

= sup∗Nm

∥∥∥b(A;Nm)
∥∥∥
Xβ

and the conditions in (3.2) and (3.3) follow from (3.4). □

Theorem 3.2. Let 1 < p < ∞.
(a) If A ∈ (m(ϕ), ℓp), then LA ∈ C(m(ϕ), ℓp) if and only if

(3.5) lim
m→∞

sup
B∈S(At)

sup∗K

( ∞∑
n=m+1

∣∣∣∣∣∑
k∈K

bnk∆ϕk

∣∣∣∣∣
p)1/p

= 0.

(b) If A ∈ (n(ϕ), ℓp), then LA ∈ C(n(ϕ), ℓp) if and only if

(3.6) lim
m→∞

sup
s≥1

sup
σ∈Cs

(
1

ϕs

∞∑
n=m+1

∣∣∣∣∣∑
k∈σ

ank

∣∣∣∣∣
p)1/p

 = 0.



COMPACT MATRIX OPERATORS 1101

Proof. We assume A ∈ (X, ℓp) (1 < p < ∞) where X = m(ϕ) or X = n(ϕ).
Since ℓp has AK, again by [7, Theorem 2(c), (8)], LA ∈ C(X, ℓp) is equivalent
to

(3.7) lim
m→∞

∥∥∥C [m]
∥∥∥
(X,ℓp)

= 0.

We write D[m] = (C [m])t. Then D[m] is the matrix with the columns (D[m])(k)

= 0 for 1 ≤ k ≤ m and (D[m])(k) = Ak = (akn)
∞
n=1 for k ≥ m + 1. Now the

conditions in (3.5) and (3.6) follow from (3.7) by Remark 2.8 and (2.19) and
(2.20) in Corollary 2.5 for X = m(ϕ), and (2.17) and (2.18) in Corollary 2.5
for X = n(ϕ). □

Remark 3.3. It is obvious from Remark 2.7 that the result of Theorem 3.2
extends to p = 1 and so we obtain alternative characterizations for the classes
(m(ϕ), ℓ1) and (n(ϕ), ℓ1) from those given in Theorem 3.1.

Now we establish necessary and sufficient conditions for the entries of a
matrix A ∈ (ℓp,m(ϕ)) or A ∈ (ℓp, n(ϕ)) (1 < p ≤ ∞) for LA to be a compact
operator.

Given an infinite matrix A = (ank)
∞
n,k=1 and m ∈ N, we write A⟨m⟩ =

(a
⟨m⟩
nk )∞n,k=1 for the matrix with the columns (A⟨m⟩)(k) = A(k) for 1 ≤ k ≤ m

and (A⟨m⟩)(k) = 0 for k ≥ m+ 1; also let C⟨m⟩ = A−A⟨m⟩.

Theorem 3.4. Let 1 < p ≤ ∞.
(a) If A ∈ (ℓp,m(ϕ)), then LA ∈ C(ℓp,m(ϕ)) if and only if

(3.8) lim
m→∞

sup
t≥1

sup
τ∈Ct

1

ϕt

( ∞∑
k=m+1

∣∣∣∣∣∑
n∈τ

ank

∣∣∣∣∣
q)1/q

 = 0.

(b) If A ∈ (ℓp, n(ϕ)), then LA ∈ C(ℓp, n(ϕ)) if and only if

(3.9) lim
m→∞

 sup
B∈S(A)

sup∗N

( ∞∑
k=m+1

∣∣∣∣∣∑
n∈N

bnk∆ϕn

∣∣∣∣∣
q)1/q

 = 0.

Proof. We assume A ∈ (ℓp, Y ) where Y = m(ϕ) or Y = n(ϕ).
Since ℓβp = ℓq has AK for 1 < p ≤ ∞, that is, for 1 ≤ q < ∞, it follows from

[7, Corollary, p. 84] that LA ∈ C(ℓp, Y ) if and only if

(3.10) lim
m→∞

∥∥∥C⟨m⟩
∥∥∥
(ℓp,Y )

= 0.

Now the conditions in (3.8) and (3.9) are immediate consequences of (2.13)-
(2.16) in Corollary 2.4. □

Remark 3.5. Let 1 < p < ∞ and X = m(ϕ) or X = n(ϕ). It follows from [5,
Lemma 14] and [7, Theorem 3] by [7, Lemma 2(4)] that if A ∈ (X, ℓp), then
LA ∈ C(X, ℓp) if and only if LAt ∈ C(ℓq, X

β); also ∥LAt∥ = ∥LA∥ by Remark
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2.8. Thus the conditions in (3.5) and (3.6) can immediately be obtained from
those in (3.9) and (3.8), respectively, and vice versa.

In the sequel we always assume that

(3.11) ϕk → ∞ and
k

ϕk
→ ∞ (k → ∞),

since m(ϕ) = ℓ1 (and consequently n(ϕ) = ℓ∞) if and only if limk→∞ ϕk < ∞,
and m(ϕ) = ℓ∞ (and consequently n(ϕ) = ℓ1) if and only if limk→∞(k/ϕk) = 0
([5, Lemma 5]).

Theorem 3.6. (a) If A ∈ (m(ϕ), ℓ∞), then LA ∈ C(m(ϕ), ℓ∞) if and only if

(3.12) lim
m→∞

(
sup
n

sup
u∈S(An)

∞∑
k=m+1

|uk|ϕk

)
= 0.

(b) If A ∈ (ℓ1, n(ϕ)), then LA ∈ C(ℓ1, n(ϕ)) if and only if

(3.13) lim
m→∞

(
sup
k

sup
u∈S(A(k))

∞∑
n=m+1

|un|ϕn

)
= 0.

Proof. (a) Since we assume (3.11), (m(ϕ))β = n(ϕ) has AK by [6, Theorem 8
(c)], and it follows from [7, Corollary, p. 84] and (2.6) in Theorem 2.3(a) that
LA ∈ C(m(ϕ), ℓ∞) if and only if

(3.14) lim
m→∞

∥∥∥C⟨m⟩
∥∥∥
(m(ϕ),ℓ∞)

= 0.

Now (3.12) is an immediate consequence of (3.14) and (2.5) in Theorem 2.3
(a).

(b) Let A ∈ (ℓ1, n(ϕ)). As in Remark 3.5 it follows that LA ∈ C(ℓ1, n(ϕ)) if
and only if LAt ∈ C(m(ϕ), ℓ∞); also ∥LA∥ = ∥LAt∥. So (3.13) is obtained from
(3.12) with A replaced by At and n and k interchanged. □
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