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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS
FOR SECOND-ORDER STURM-LIOUVILLE AND
MULTI-POINT PROBLEMS ON TIME SCALES

YANBIN SANG, ZHONGLI WEI, AND WEI DONG

ABSTRACT. In this paper, a class of second-order boundary value prob-
lems with Sturm-Liouville boundary conditions or multi-point conditions
is considered. Some existence and uniqueness theorems of positive solu-
tions of the problem are obtained by using monotone iterative technique,
the iterative sequences yielding approximate solutions are also given. The
results are illustrated with an example.

1. Introduction

In this paper, we are interested in the existence, uniqueness and iteration of
positive solutions for the following second-order boundary value problem with
Sturm-Liouville boundary conditions or multi-point conditions on time scales

(1.1) (py™)Y () + h(t)f(y(t)) = 0, t € (a,b]r,

(1.2) ay(a) — B(py™)(a) =0, vy’ (b) + (py™)(b) =0, or

(1.3)

ay(a) - B(py™)(a) = zn: $i(py™)(t:), 97 (b) + 8(py™)(b) = Zn: bi(py™) (t:),
where - -

(1.4) p: la,0(b)]r — (0,400), p € Cla,o(b)]r,

o(b) A
(1.5) B, 6 € (0,400), a, v€[0,400), Bv+a(5+a7/ F:) > 0,
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the points t; € (a,b)r for i € {1,2,...,n} with t; < t3 < -+ < t,, the
scalar constants ¢; and t; are in [0, +o0) for i € {1,...,n}. Some preliminary
definitions and theorems on time scales can be seen in [1, 9, 10, 11] which are
excellent references for the calculus of time scales.

The study of dynamic equations on time scales goes back to its founder Hilger
[14], and is a new area of still fairly theoretical exploration in mathematics.
In particular, the theory is widely applied to biology, heat transfer, epidemic
models and stock market, for details, see [8, 14, 15, 23, 26] and references
therein. In recent years, there was much attention focused on the existence of
positive solutions of second-order boundary value problems on time scales, such
investigations can provide accurate information of phenomena that manifest
themselves partly in continuous time and partly in discrete time. We refer the
reader to [1-7, 12, 13, 16, 17, 19, 20, 22, 24] for some recent results. But very
little work has been done on the uniqueness and iteration of positive solutions
of dynamic equations on time scales. We would like to mention some results
of Anderson and Wong [6], Jankowski [16] and Wang, Wu and Wu [24], which
motivated us to consider the BVP (1.1), (1.2) and (1.3).

In [6], Anderson and Wong studied the second-order time scale semipositone
boundary value problem

(1.6) (py™)Y (1) + Af(tult)) =0, ¢ € (a,0]r,

with Sturm-Liouville boundary conditions (1.2) or multi-point conditions (1.3).

On the other hand, more and more authors have proved the existence results
for dynamic equations on time scales by using the method of lower and upper
solutions. In [16], Jankowski investigated second order dynamic equations with
deviating arguments on time scales of the form

(1.7) —a®(t) = f(t,2(t), 2(a(t) = (Fz)(t), t € [0,T]r,

(1.8) z(0) =k eR, z(T)=k: eR.

They formulated sufficient conditions, under which such problems had a mini-
mal and a maximal solution in a corresponding region bounded by upper-lower
solutions.

In [24], Wang, Wu and Wu considered a method of generalized quasilin-
earization, with even-order k(k > 2) convergence, for the BVP

(1.9) ~(p(1)2)Y +q(t)2” = f(t,27) + g(t,27), t € [a,b]r,

(1.10) na(p(a) — 22 (p(a)) = 0, (o(b)) — m3z(n) = 0.

The main contribution in [24] relaxed the monotone conditions on f((t,x),
g (t,z)(1 < i < k) including a more general concept of upper and lower
solution in mathematical biology, so that the high-order convergence of the
iterations was ensured for a larger class of nonlinear functions on time scales.
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We would also like to mention the results of Sang [20] and Sun [22]. In
[20], we considered the existence of positive solutions and established the cor-
responding iterative schemes for the following m-point boundary value problem
on time scales

(1.11) utV () + f(t,u(t)) =0, t€[0,1] CT,
m—2
(1.12) Bu(0) — yu®(0) = 0, u(l) = Z a;u(&;), m>3.

By considering the “heights’” of the nonlinear term f on some bounded sets
and applying monotone iterative techniques on a Banach space, we did not
only obtain the existence of positive solutions for the BVP (1.11) and (1.12),
but also established the iterative schemes for approximating the solutions. Our
method was based on the associated Green’s function obtained in [13]. In
essence, we combined the method of lower and upper solutions with the cone
expansion and compression fixed point theorem of norm type.

Very recently, in [22], Sun investigated the existence of at least one positive
solution for the following second-order three-point BVP on time scales

(1.13) —z28(t) = f(t,z(t)), t€[a,b]r,

(1.14) w(a) =0, x(a*(b)) = dx(n),

where a, b € T with a <b, € (a,b)T and0<5<02(bf)a_a

For the function f, the author imposed the following hypotheses:
(A1) f:[a,b]lr x Rt — RT is continuous;

(Az) for fixed t € [a,b]T, f(t,u) is monotone increasing on u;
(A3) there exists ¢ € (0,1) such that

f(t,ru) > rif(t,u) for r € (0,1) and (t,u) € [a,blr x RT.
The author obtained the following result.

Theorem 1.1 ([22, Theorem 2.3]). Assume that (A1)-(As) are satisfied. Then
the BVP (1.13) and (1.14) has at least one positive solution w. Furthermore,
there exist M > m > 0 such that

m(t—a) <w(t) < M(t—a), tea,0>b)r.

In this work, without demanding the existence of upper and lower solutions, we
present conditions for the BVP (1.1), (1.2) and (1.3) to have a unique solution
and then study the convergence of the iterative sequence. Furthermore, we
study the existence and uniqueness of positive solutions of the BVP (1.13) and
(1.14). Our result obtained here improves Theorem 1.1. The ideas come from
Zhai [25] and Liang [18].
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Let T be a time scale which has the subspace topology inherited from the
standard topology on R. For each interval I of R, we define It = I NT. Let
the Banach space B = C[a, o (b)|t be equipped with the norm

Jull = sup |u(®)].
t€la,o(b)]r

Throughout this paper, we need the following assumptions:

(Hy) f:]0,400) — [0, +00) is continuous and f(y) > 0 for y > 0;

(Hz) h : (a,blr — [0, +00) is continuous and f: G(s, s)h(s)Vs > 0, where
G(s, s) is given in (2.3);

(Hs) f :[0,400) — [0, +00) is nonincreasing, and there exist two positive-
value functions ¢(7), w(7) on interval (a,b)r such that ¢ : (a,b)r — (0,1)

is a surjection and w(7) > (1), V 7 € (a,b)r which satisfy f (w(lT) y) >
(.U(T)f(y), VT € (avb)T7 Y Z 0.

2. Several lemmas

To prove the main results in this paper, we will employ several lemmas.
These lemmas are based on the linear equation

(2.1) ~(py™)¥(t) = u(t), t€ (a0,
with boundary conditions (1.2) and (1.3). Define the constant d via

o(b) A
(2.2) d:=py+ad+ ow/ =T
o p(7)

Lemma 2.1 ([6, Lemma 2.1]). Assume (1.4) and (1.5). Then the nonhomoge-
neous boundary value problem (2.1), (1.2) has a unique solution y for which the
formula

b
y(t) = / G(t, s)u(s)Vs, t € [a,0()]x

holds, where the Green function G(t,s) is given by

1 (5+0‘fspA(f)(5+ 5o AT): a<s<t<o(b),
2.3) G(t,s) = -
(2.3) G(t,s) d (5+Q“W)(5+’Yf b)pA(TT): a<t<s<olb),

for all t,s € [a,0(b)]r, where d is given in (2.2).

Lemma 2.2 ([6, Lemma 2.2]). Assume (1.4) and (1.5). Then the Green func-
tion G(t,s) in (2.3) satisfies

g(t)G(s,s) < G(t,s) < G(s,s), t,sé€ [a,o(b)]r,
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where g is given by

§+ j‘o(b) AT B"‘aft AT

: p(7)
(2.4) g(t) = min L € [0,1].
t€la,o(b)]r 6+’Yf a(b) pA(;— 54—04]0(1) pA(;.)

For the remainder of this paper set
D:=d [dazwﬂr’yZd)i] :
i=1 i=1

Lemma 2.3 ([6, Lemma 5.1]). Assume (1.4) and (1.5). Let u € Ciq4la,br.
If D # 0, then the nonhomogeneous dynamic equation (2.1) with boundary
conditions (1.3) has a unique solution ¢ for which the formula

(2.5)
o /ab Gt s)u(s)Vs + A(w) <B +a /at pA(TT)) + B(u) (5 + 7/:(1» ;ﬁ%)

fort € [a,0(b)]T holds, where the function G(t,s) is the Green function (2.3),
and the functionals A and B are defined by

Z%fp t)GA (i, s)u(s)Vs v 3 i

1 i=1
A(U) = B n n 9
S 01 fy t)G (i Ju(s)Vs  d+y Y
szfp )G (1, 8)u(s)Vs  —d+a > vy
1 i=1
B(u) := D

Z(bzfp £)G (1, 5)u(s)V's aﬁlasi

Lemma 2.4 ([6, Lemma 5.2]). Assume (1.4) and (1.5). Let u € Ciq4[a, bl with
u>0. If

D#0, A(u)>0, and B(u)>0

the unique solution ¢ as in (2.5) of the time scale boundary value problem (2.1),
(1.3) satisfies

gDIICI < <) <<l ¢ € la,a (D),

where g is given in (2.4).

3. Main results
Theorem 3.1. Assume (H1)-(Hs) hold. Then, the BVP (1.1) and (1.2) has

a unique positive solution §(t) in Q, where

Q={yeB|ylt) >0, t € |a,o(b)r}.
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Moreover, for any yo € §2, constructing successively the sequence

b
pa(®) = [ G () () Vs, n=0,1.2....,
we have y,(t) converges uniformly to g(t) in [a,o(b)]r.

Proof. First, we show that the BVP (1.1) and (1.2) has a solution.
It is easy to see that the BVP (1.1) and (1.2) has a solution y = y(t) if and
only if y is a fixed point of the operator equation

b
(3.1) Sy(t)Z/ G(t,5)h(s)f(y(s))Vs, t € a,o(D)]r.

In view of (H3) and (3.1), Sy is nonincreasing in y. Moreover, for any 7 €
(a,b)t, we have

1 b 1
32 (o) 0= [ oner (o) s
b
> wlr) [ Gl )06 Vs = ()50t

for t € [a,o(b)]r and y € B with y > 0.
Let L = ff G(s, s)h(s)Vs, the condition (Hs) implies L > 0. Since f(y) > 0
for y > 0, by Lemma 2.2, we have

b
S(L) = / G(t, s)h(s)F(L)Vs
b
— (L) / G(t, 5)h(5)Vs
b

> f(L)g(t) / G(s, $)h(s)V's

= f(L)g@t)L, t € la,o(b)]r.

Moreover, we obtain

b
S(L) < £(L) / G(s, $)h(s)V's
— (L)L

Thus
f(L)g(t) L < S(L) < f(L)L, t€[a,o(b)]r.

Therefore, we can choose a sufficiently small number e € (0, 1) such that

el <S(L) < £
e
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It follows from (Hj) that there exists 79 € (a,b)r such that ¢(79) = e, so

L
(3.3) ¢(r0)L < S(L) < :
©(10)
Since :E:Z; > 1, we can take a sufficiently large positive integer k such that
k
UJ(T()) 1
)
B4 o] = )
It is clear that
(3.5) [‘p(m)r < ¢(mo).
w(70)
We define I
k
ug = |@(10)|"L, vo = .
0 = [p(70)] 0 [SD(TO)V“

Evidently, uyp = [¢(70)]**vo < vo. Take any A € (0, [p(70)]?¥], then X € (0,1)
and ug > Avg.

By the monotonicity of S, we have Svg < Swug. Furthermore, combining
(H3) with (3.3) and (3.4), we have

59 sw=5(aw) =5 (GrapmrE?)

From (Hs), we get

Sy=5 (o) 2 w8, V€ (@b y20

and hence

S(e(s) < S50 Vs € (@b, v 20
Thus, we have
Suo = S ([p(10)]"L) = S ((0)[ip(70)]* 1 L) < w(lm)s ([p(o)]F L)

1 1 L
= Ll B = Lo o)

An application of (3.5) yields

L
(37) SUQ é W = 9.

Constructing successively the sequences

Up = SUp_1, Up =SUpn_1, n=1,2,....
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By the monotonicity of S, we have u; = Svg < Sugp = v;. By induction, we
obtain u, <wv,, n=1,2,.... It follows from (3.6), (3.7) and the monotonicity
of S that
(3.8) up <up <Ly <o Sy < <o S,
Note that ug > A\vg, so we can get u,, > ug > g > A\v,, n=1,2,.... Let
An = sup{A > Olu, > v, }, n=1,2,....
Thus, we have
(3.9) Up > ApUp, n=1,2,...,
and then
Upy1 = Up = AnUp > )\nvn+17 n=12....

Therefore, Apt1 > An, i.e., {A\,} is increasing with {\,} C (0,1]. Set \* =
lim,, 00 A. We can prove that A* = 1. In fact, if 0 < \* < 1, by (Hj), there
exists 7o € (a,b)r such that ¢(7y) = A*. Consider the following two cases:

(i) There exists an integer N such that Ay = A*. In this case, we have
An = A* for all n > N holds. Hence, for n > N, it follows from (3.2) and the
monotonicity of S that

1 1
= > —_— = _— > T - T .
Un+1 Svp, > 8 ()\* un) S <90(7__0) un) = W(TO)SUn W(TO)Un-l-l

By the definition of A, we have
Angl = AF > w(ﬁ)) > @(77'0) =\

This is a contradiction.
>\’!L

(ii) For all integer n, A\, < A*. In this case, we have 0 < 32 < 1. In virtue of

)\*
(Hj), there exists p, € (a,b)r such that ¢(u,) = i” Hence, combining (3.2)

with the monotonicity of S, we have

1 1 1 1 1
U1 = SV, > S| —up | =S| — —u, | =85 — U
o <An ) (ﬁz s ) (so(un) (7o) )

1 _
> w(pn)S <(p(7_0)un) > w(ptn)w (7o) Sun,

= w(pn)w(70)Vn+1-

By the definition of \,,, we have

Ant1 2 w(pn)w(To) > @(pn)w (7o) = —w(7o)-
Let n — oo, we have \* > i—:w(?o) > i—:g@(i’o) = ¢(Tp) = A*, and this is also
a contradiction. Hence, lim,, oo Ay, = 1.
Thus, combining (3.8) with (3.9), we have

0 < tnt(t) — tn(t) < vn(t) = Avn(t) = (1 — An)on(t) < (1 — An)vo(?)
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for ¢t € [a,o(b)]r, where [ is a nonnegative integer. Thus,
[ttt = tnll < flon = unll < (1= An)vo.
Therefore, there exists a positive function § € B such that
nlggo un(t) = nhﬁn;o vn(t) = g(t) for t € [a,o(b)]r.
By the monotonicity of S and (3.8), we have
Un41(t) = Sv,(t) < SG(t) < Sun(t) = vpy1(t).

Let n — oo and we get Sg(t) = g(¢). That is, g(t) is a positive solution of
the BVP (1.1) and (1.2).

Next, we show the uniqueness of solutions of the BVP (1.1) and (1.2). As-
sume, to the contrary, that there exists a positive solution g(t) of the BVP
(1.1) and (1.2) such that g(¢) # g(t), t € [a,0(b)]r. We can know that there
exists 0 < n < 1 such that ng(t) < g(t) < %g(t) for ¢ € [a,o(b)]r. Let

o = sup {o <0 1nit) < 50) < Ti0), te [a,awm} .

Then 0 < 1o < 1 and nog(t) < g(t) < niogj(t) for t € [a,o(b)]r.
We now show that 7o = 1. In fact, if 0 < 79 < 1, then, in view of (Hj3),
there exists 71 € (a, b)T such that ¢(71) = n9. Furthermore, we have

7=5025 (1) =5 (Z50) 2 er)si = (i,

and

_ _ . 1 Moy 1 . 1
=575 50mi) < 155 (22 ) = = e
Since w(7y) > @(11) = Mo, this contradicts the definition of ny. Hence ny = 1.
Therefore, the BVP (1.1) and (1.2) has a unique solution.
Finally, we show that “moreover” part of the theorem. For any initial yg € €2,
we can choose a sufficiently small number € € (0, 1) such that

1
el <yo < =L.
e

It follows from (H3) that there exists 7o € (a,b)r such that ¢(m2) = €; and
hence

p(r2)L < yo <

p(m2)
We can choose a sufficiently large positive integer k such that

[:Ei]k > o
L

g = T2 k @ = .
UO_[QO( )] L, v [()0(7_2)}]C

Define




1056 YANBIN SANG, ZHONGLI WEI, AND WEI DONG

Obviously, 4y < yg < 0. Let

Uy = Sﬁn—la Up = San—la

b
yn(t) = Sy () = / G(t, $)h(5) f (ynr (£)) Vs,

for t € [a,0(b)]r, and n = 1,2,.... By induction, we get @, < y, < Op,
n=12,...
Similarly to the above proof, it follows that there exists y* € 2 such that

. ~ . ~ * * *
lim 4, = lim o, =y*, Sy" =y".
n—oo n—oo

By the uniqueness of fixed points of S in 2, we get y* = y. Therefore, we have

lim  sup  Jya(t) — §(8)] = 0.

N—=00 4 la,o(b)]r

This completes the proof of the theorem. (I

Remark 3.1. In Theorem 3.1, we give a way to find the solutions which will be
useful from an application viewpoint. However, whether this method can be
extended to the semipositone problem is still an open problem.

Similarly to the proof of Theorem 3.1, we can obtain the following result by
means of Lemma 2.3 and Lemma 2.4.

Theorem 3.2. Let d —ad ' ; > 0, ¥jd + v D | i — Y5 >y i >
0(G=12,...,n). Assume (Hy)-(Hs) hold. Then, the BVP (1.1) and (1.3) has
a unique positive solution y*(t) in Q. Moreover, for any yo € 2, constructing
successively the sequence

b t
Yua (t) = / G(t, 5)h(s) £ (4 (5)) Vs + A (h(3)f (yn(5)) <ﬂ+a / AT)

p(7)
o) Ar
4+ B (h(s)f(yn(s))) <5+7 / M)

fort € la,o(b)]r, n=0,1,2,..., we have y,(t) converges uniformly to y*(t) in
[a,o(b)]r.

In Theorem 3.1, let f = f1 + fo, under appropriate conditions, we have the
following theorem which generalizes and extends Theorem 3.1.

Theorem 3.3. Assume (Hs) holds, and the following conditions are satisfied
(C1) fi : [0,+00) — [0, 400) are continuous and f;(y) > 0 fory >0 (i =1,2);
(C2) f1:[0,400) —> [0,400) is nondecreasing, fz : [0,4+00) — [0,+00)
is nonincreasing, and there exist two positive-value functions (1), w(r) on
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interval (a,b)y such that ¢ : (a,b)y — (0,1) is a surjection and w(r) >
o(1), ¥ 7 € (a,b)r which satisfy

file()) > W) A1), fo (W(l)y) > () faly),

Vs € (a,b)r, y € [0,+00). Then, the BVP (1.1) and (1.2) has a unique positive
solution y*(t) in Q. Moreover, for any xo, yo € Q, constructing successively
the sequences

b
wn+1(t)=/ G(t, s)h(s)[f1(zn(s)) + fa(yn(s))]Vs, t € [a,0(b)]r,

b
Ynt1(t) = / G(t, s)h(s)[f1(yn(s)) + f2(2n(s))]Vs, t € [a,o(b)]r,
n=20,1,2,..., we have

lim  sup |z,(t) —y*(¢)|=0, lim sup |y.(t)—y* ()] =0.

n—oo te[a,o'(b)]—ﬂ- n—oo tG[a,a(b)]T

In the following, we will apply Theorem 3.3 to the BVP (1.13) and (1.14),
our conclusion is the following theorem.

Theorem 3.4. Assume the following conditions are satisfied

(D1) f = f1+ fa, where f; : [a,blr X [0,400) — [0, +00) are continuous
(i =1, 2);

(Ds) for fized t € [a, b, f1(t,u) is increasing on u, and fo(t,u) is decreasing
on u;

(D3) there exist two positive-value functions ¢(7), w(r) on interval (a,b)r
such that ¢ : (a,b)r — (0,1) is a surjection and w(t) > (1), V 7 € (a,b)r
which satisfy

£t o(s)u) > w(s) (b ), fo (t,

for s € (a,b)r and (t,u) € [a,b]t X [0, +00);

1
<p(s)u) > w(s) fa(t, u)

o(b) s
(Dy) /a = icjz(i’ézn — [fi(s,s —a) + fa(s,s — a)]As > 0, where

G(t,s) is defined in (3.10). Then, the BVP (1.13) and (1.14) has a unique
positive solution z*(t) in Q, where
Q= {z(t) € Cla,d*()]1 | 3 M >m >0 such that m(t —a) < z(t)
< M(t—a), telaa()s).

Furthermore, for any o, yo € Q, constructing successively the sequences

o(b)
Tpy1(t) = K(t,8)[f1(s,2n(s)) + fa(s,yn(5))]As,

a
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o(b)
Yo (1) = / K (6, 8)[f1(5,9n(3)) + Fols,a(5)] As
fort € [a,0%(b)|t, and n =0,1,2,..., where

K(t,s) = G(t,s) +

with
A 1 (t—a)(o®(b) —o(s)), t<s,
1 tg)= —
T < (B R K
we have
lim  sup |z,(t) —2*(t)] =0, lim sup |yn(t) —z*(t)] =0.
n—oo tE[a,o’Q(b)]T n—oo tE[a,O’Z(b)]T

Proof of Theorem 3.4. Let
E={z|z: [a,0*)]r — R is continuous},
P={zcE|z(t)>0 for tca,a*D)r}
Define an operator F': P x P — E by

o (b)
F(zy,22)(t) = K(t,5)[f1(s,21(s)) + fa(s, x2(s))|As, t € [a,0° ()]

a

According to Lemma 2.1 in [22], we can know that x is a solution of problem
(1.13) and (1.14) if and only if x = F(x,z). By condition (D), we can obtain
that F': P x P — P.

Similarly to the proof of Theorem 3.1 in [21], it suffices to verify that F'(t —
a,t—a) € .

In fact, for any t € [a,0?(b)]r, it follows from Lemma 2.2 in [22] that
(3.11) F(t—a,t—a)
o(b)

K(t,s)[fi(s,s —a) + fa(s,s — a)]As

a

e 0G(n,5)(t — a) —a s,8—a)|As
> [ o S s o) + s~ A

_ [ oGs) . ) )
_/a 02(5)—a—5(77—a)[f1(8’8 a) + fa(s,s —a)]As(t —a),

and
(3.12) F(t—a,t—a)

o(b) A s
< [t s~ )+ fa(ss5 — )]st ).

Combining condition (D4) with (3.11) and (3.12), we have F(t —a,t —a) € Q.
The rest proof is similar to that of Theorem 3.1 in [21], we omit it here. O
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Remark 3.2. In Theorem 3.4, we impose the more general conditions on the
function f than the conditions in Theorem 1.1. Moreover, the uniqueness of
positive solutions of the BVP (1.13) and (1.14) is obtained, and the iterative
sequences which converge uniformly to approximation solutions are also given.

In the end, we give an example to illustrate our results.

Example 3.1. Let T = {2¥},c7 U {0}, where Z denotes the set of all integers.
Considering the following BVP

(3.13) yAV(t) + Zn:ﬁiy*“i =0, te (0,1,
(3.14) y(0) —y2(0) =0, y7(1) +y>(1) =0,

where n is a positive integer, a; € [0,1) and 5; > 0 for i = 1,2,...,n. We
claim that, the BVP (3.13) and (3.14) has a unique positive solution g(t).
Furthermore, for any yg € D, constructing successively the sequence

ba(®) = [ Gl D Bilan(s) Vs

for t € [0,1]r and n =0,1,2,..., we have

lim sup |yn(t) —§(t)| = 0.

N0 tel0,1]r

In fact, by direct computation, we get

1 [ee] [ee] oo oo
/ G(s,5)Vs =44 27172 N g=8=in _ R g=n 4§ "g=i=dn
0 n=0 n=0 n=0 n=0
79
=5 > 0.

Note that for y € (0,400), f(y) = > iy Biy~* > 0 and is nonincreasing. We
set o(1) = 7, w(r) = 7%(0 € (sup; i, 1)). Moreover, for 6 € (sup; a;, 1), it
is easy to see that ¢ : (0,1)r — (0,1) is a surjection and w(7) > ¢(7) for
7 € (0,1). For y > 0, we have

f (iy) => B (iy) > '3 By~ =" f(y), s€(0,1)r,
i=1 i=1

i.e., the condition (Hs) in Theorem 3.1 holds. The conclusion then follows from
Theorem 3.1.
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