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MULTIPLICATIVE SET OF IDEMPOTENTS

IN A SEMIPERFECT RING

Sangwon Park and Juncheol Han

Abstract. Let R be a ring with identity 1, I(R) be the set of all idem-

potents in R and G be the group of all units of R. In this paper, we show
that for any semiperfect ring R in which 2 = 1+1 is a unit, I(R) is closed
under multiplication if and only if R is a direct sum of local rings if and
only if the set of all minimal idempotents in R is closed under multipli-

cation and eGe is contained in the group of units of eRe. In particular,
for a left Artinian ring in which 2 is a unit, R is a direct sum of local
rings if and only if the set of all minimal idempotents in R is closed under
multiplication.

1. Introduction and basic definitions

Let R be a ring with identity 1, G the group of all units of R, J the Jacobson
radical of R and I(R) the set of all idempotents of R. In this case, I(R) is
called commuting if ef = fe for all e, f ∈ I(R). Observe that if I(R) is
commuting, then I(R) is closed under multiplication, that is, I(R) = I(R)2

where I(R)2 = {ef : e, f ∈ I(R)}.
By the following example, there is a ring R without identity such that the

converse is not true.

Example 1. Let R =
( Z2 Z2

0 0

)
be a ring without identity where Z2 is the ring

of integers modulo 2. Then I(R) = {( 0 0
0 0 ) , (

1 0
0 0 ) , (

1 1
0 0 )}.

Note that I(R) is closed under multiplication, but ( 1 0
0 0 ) (

1 1
0 0 ) ̸= ( 1 1

0 0 ) (
1 0
0 0 ),

and hence I(R) is not commuting.

On the other hand, in Section 2, we will prove that if R is a ring with identity,
then I(R) is commuting if and only if I(R) is closed under multiplication if and
only if every idempotent of R is central.

Let ⪯ denote the usual relation on I(R), that is, e ⪯ f means that ef = fe =
e (refer [2]). A nonzero idempotent e is called minimal if there is no idempotent
strictly between 0 and e according to the partial ordering ⪯. Note that the
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minimal idempotents in this sense are precisely the primitive idempotents of
R. In Section 2, we will show that if R is a ring with identity such that I(R)
is closed, then (1) |I(R)| = |I(R/J)| where | · | is the cardinality of a set; (2)
Im(R) is closed under multiplication and |Im(R)| = |Im(R/J)| where Im(R)
(resp. Im(R/J)) is the set of all minimal idempotents of R (resp. R/J).

We also define a relation e ⪯1 f by efe = e (refer [2]). In [2], by considering
the relation ⪯1 Dolz̆an has shown that for a finite ring R with identity, if the
set of all minimal idempotents of R is closed under multiplication, then for all
minimal idempotents e in R, eGe is contained in the group of units of eRe. As
a corollary he also has shown that the set of all minimal idempotents of R is
closed under multiplication if and only if R is a direct product of local rings.
It is clear that if I(R) is closed under the multiplication, then the above two
relations ⪯ and ⪯1 are equal.

In Section 3, we will show that for any semiperfect ring R with identity 1 in
which 2 = 1 + 1 is a unit, I(R) is closed under multiplication if and only if R is
a direct sum of local rings if and only if the set of all minimal idempotents of R
is closed under multiplication and eGe is contained in the group of units of eRe.
We also will show that for a left Artinian ring in which 2 is a unit, the fact that
the set of all minimal idempotents in R is closed under multiplication implies
that eGe is contained in the group of units of eRe. Hence as a corollary we
have that for a left Artinian ring R with identity 1 in which 2 is a unit, I(R) is
closed under multiplication if and only if R is a direct sum of local rings if and
only if the set of all minimal idempotents of R is closed under multiplication.

Throughout this paper, let R be a ring with identity 1, G be the group of
units of R, let J denote the Jacobson radical of R and let I(R) (resp. Im(R))
be the set of all idempotents of R (resp. the set of all minimal idempotents of
R).

2. Some properties of a ring with commuting idempotents

In this section, we will find some properties of a ring R such that I(R) is
closed under multiplication.

Lemma 2.1. Let R be a ring. Then the following are equivalent:
(1) I(R) is commuting;
(2) I(R) is closed under multiplication;
(3) every idempotent of R is central.

Proof. (1) ⇒ (2). Clear.
(2) ⇒ (3). Let e ∈ I(R) be arbitrary, and let f = 1 − e ∈ I(R). Then

for all a ∈ R, e + eaf ∈ I(R). Since I(R) is closed under multiplication,
(e + eaf)f = ef + eaf = eaf ∈ I(R), and so eaf = (eaf)(eaf) = 0, which
implies that ea = eae for all a ∈ R. Similar argument yields ae = eae for all
a ∈ R. Thus e is central.

(3) ⇒ (1). Clear. □
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Lemma 2.2. Let R be a ring such that I(R) is commuting. If e − f ∈ J for
some e, f ∈ I(R), then e = f .

Proof. Since I(R) is commuting, ef = fe. Note that (e− f)2 = e− 2ef + f =
(e−f)4, and so (e−f)2 ∈ I(R). Thus (e−f)2 ∈ I(R)∩J . Since I(R)∩J = {0},
(e− f)2 = e− 2ef + f = 0. Hence

(∗) e+ f = 2ef.

By multiplying with e (resp. f) from the both sides of (∗), we have e = ef
(resp. f = ef). Hence e− f = ef − ef = 0. □

Corollary 2.3. Let R be a ring. If I(R) is commuting, then |I(R)| = |I(R/J)|.

Proof. Clearly, |I(R)| ≥ |I(R/J)|. Assume that there exist two idempotents
e, f of R (e ̸= f) such that e + J = f + J . Then e − f ∈ J , and so e = f by
Lemma 2.2, a contradiction. Hence |I(R)| = |I(R/J)|. □

Proposition 2.4. Let R be a ring such that I(R) is commuting. Then
(1) If e is an idempotent in R such that ē = e + J ∈ Im(R/J), then e ∈

Im(R).
(2) |Im(R)| = |Im(R/J)|.
(3) Im(R) is closed under multiplication.

Proof. (1) Suppose that there exists an idempotent e1 ∈ R such that 0 ̸= e1 ⪯
e. Then clearly ē1 ⪯ ē. Since ē is a minimal idempotent, ē1 = 0̄ or ē1 = ē.
If ē1 = 0̄, then e1 ∈ I(R) ∩ J = {0}, and so e1 = 0, a contradiction. Hence
ē1 = ē, and then e1 − e ∈ J . Since I(R) is commuting and e1 − e ∈ J , e1 = e
by Lemma 2.2. Hence e ∈ Im(R).

(2) It follows from (1).
(3) Let e, f ∈ Im(R) be arbitrary. Since I(R) is commuting, we have e(ef) =

ef = (ef)e, which implies that ef ⪯ e. Since e is a minimal idempotent, ef = 0
or ef = e. Hence ef is a minimal idempotent in R. □

Remark 1. Let R be a ring and N be a nil ideal of R. By the similar argument
as the one given in Lemma 2.2 and Proposition 2.4, we have that if I(R) is
commuting (in particular, if R is a commutative ring), then |I(R)| = |I(R/N)|
and |Im(R)| = |Im(R/N)|.

Proposition 2.5. Let R be a ring in which 2 is a unit such that G is an abelian
group. If every idempotent of R/N is central for some nil ideal N of R, then
every idempotent of R is central.

Proof. Let e ∈ I(R), a ∈ R be arbitrary. Since e + N ∈ I(R/N) is central,
(e + N)(a + N) = (a + N)(e + N), and so ea − ae ∈ N . Note that since
G is abelian and 2 ∈ G, eg = ge for all g ∈ G. Since 1 + (ea − ae) ∈ G,
e(1 + (ea− ae)) = (1 + (ea− ae))e, and so ea = eae = ae, which implies that
e is central. □
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Proposition 2.6. Let R be a ring and N be an ideal of R such that I(R/N) is
commuting. If ae = ea for all e ∈ I(R) and all a ∈ N , then I(R) is commuting.

Proof. Let e, f ∈ I(R) be arbitrary. Since I(R/N) is commuting, (e+N)(f +
N) = (f + N)(e + N), and so ef − fe ∈ N . By assumption, e(ef − fe) =
(ef − fe)e, and then ef = efe = fe. Hence I(R) is commuting □

3. A decomposition of a semiperfect ring

Recall that a ring R is called semiperfect if R/J is left Artinian, and every
idempotent in R/J can be lifted to R. In [1], it was shown that every element
in a semiperfect ring R can be expressed a sum of a unit and an idempotent
in R (also refer [3]). Recall that a minimal idempotent in a semiperfect ring is
local by Proposition 23.5 in [4].

Proposition 3.1. Let R be a ring. If I(R) is commuting, then for all e ∈ I(R),
eGe is contained in the group of units in eRe.

Proof. Let ege ∈ eGe(g ∈ G) be arbitrary. Since I(R) is commuting, every
idempotent e ∈ I(R) is central by Lemma 2.1. Hence e = (ege)(eg−1e) =
(eg−1e)(ege), that is, ege is a unit in eRe. □

In [2], Dolz̆an has shown that for e, f ∈ Im(R) by defining e ⪯1 f if efe = e
and also defining e ∼ f if e ⪯1 f and f ⪯1 e ∈ Im(R) “∼” is an equivalence
relation on Im(R) provided Im(R) is closed under multiplication.

Lemma 3.2. Let R be a ring such that Im(R) is closed under multiplication,
and let e, f, g, h ∈ Im(R). If [e] = [f ] and [g] = [h], then [eg] = [fh], where [a]
is an equivalence class containing a ∈ Im(R) under the equivalence relation ∼.

Proof. Refer [2, Lemma 2.5]. □
Theorem 3.3. Let R be a ring, e ∈ E(R) and a ∈ G. Then eae is a unit of
eRe if and only if e ∼ aea−1.

Proof. Refer [2, Theorem 3.2]. □
Theorem 3.4. Let R be a semiperfect ring such that 2 is a unit in R. Then
the following are equivalent:

(1) I(R) is closed under multiplication;
(2) R is a direct sum of local rings;
(3) Im(R) is closed under multiplication and eGe is contained in the group

of units of eRe.

Proof. (1) ⇒ (2). Suppose that I(R) is closed under multiplication. Since R is
semiperfect, there exists a finite mutually orthogonal set of local idempotents
{e1, . . . , en} such that 1 = e1+ · · ·+en by [4, Theorem 23.6]. For all a ∈ R, a =
ae1+ · · ·+aen ∈ Re1+ · · ·+Ren. Since all ei are central for all i = 1, . . . , n by
Lemma 2.1, Rei ∩Rej = {0} for all i, j = 1, . . . , n (i ̸= j). Hence R = ⊕n

i=1Rei
is a direct sum of local rings since each Rei(= eiRei) is a local ring.
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(2) ⇒ (1). Clear.
(1) ⇒ (3). It follows from Proposition 2.4 and Proposition 3.1.
(3) ⇒ (2). Suppose that Im(R) is closed under multiplication and eGe is

contained in the group of units in eRe. First, by using the similar argument
as the one given in the proof of [2, Theorem 5.2] we will show that for all
minimal orthogonal idempotents e, f(e ̸= f), eGf = 0. Let a ∈ G be arbitrary.
Then [f ] = [afa−1] by Theorem 3.3, so [0] = [ef ] = [eafa−1] by Lemma 3.2.
Hence eaf = 0 for every a ∈ G, that is, eGf = 0. On the other hand, since
R is semiperfect, R = I(R) +G, that is, every element in R is a sum of some
idempotent and some unit in R by [1, Theorem 9] (or [3, Corollary 4]). Note
that for all idempotents e1 in R, 2e1 − 1 ∈ G. If e, f ∈ Im(R) are orthogonal,
then 0 = e(2e1 − 1)f = 2ee1f − ef = 2ee1f . Since 2 is a unit in R, ee1f = 0,
that is, eI(R)f = 0. Hence eRf = 0 for all orthogonal minimal idempotents
e, f(e ̸= f). Since R is semiperfect, there exists a finite mutually orthogonal set
of local idempotents {e1, . . . , en} such that 1 = e1 + · · ·+ en. Note that for all
a ∈ R, a = Σn

i,j=1eiaej ∈ ⊕n
i,j=1eiR1ej . Since eiRej = 0 for all i, j = 1, . . . , n

(i ̸= j), we have R = ⊕n
i=1eiRei is a direct sum of local rings. □

Remark 2. Note that for a semiperfect ring R such that 2 is a unit in R and
I(R) is commuting, R is a direct sum of local rings by Theorem 3.4, and then
the number of summands of local rings is equal to the maximal number of
mutually orthogonal minimal idempotents in R.

Lemma 3.5. Let n ≥ 2 be a positive integer and R be the n × n matrix ring
over a division ring. Then Im(R) is not closed under multiplication.

Proof. The proof is similar to the one in the [2, Lemma 5.4]. Choose two
idempotents e = E11+E12+· · ·+E1n and f = Enn where Eij is the matrix such
that (i, j)-entry is 1 and otherwise 0. Then e and f are minimal idempotents
of R and ef ̸= 0 with (ef)2 = 0. □

Proposition 3.6. Let e ∈ R be an idempotent and let N ⊆ J be an ideal of
R. If ē is primitive (equivalently, minimal) in R/N , then e is primitive in R.
The converse holds if idempotents of R/N can be lifted to R.

Proof. Refer [4, Proposition 21.22]. □

Theorem 3.7. Let R be a semiperfect ring in which J is a nil ideal. If Im(R)
is closed under multiplication, then eGe is contained in the group of units of
eRe.

Proof. First, we will show that R/J is a direct sum of division rings. Since
R is semiperfect, R/J ∼= ⊕m

i=1Mi(Di) where Mi(Di) is the full matrix ring of
all ni × ni matrices over a division ring Di for each i = 1, 2, . . . ,m. Without
loss of generality, we can let R/J = ⊕m

i=1Mi(Di). Assume that ni ≥ 2 for
some i. Consider two minimal idempotents ei = E11 + E12 + · · · + E1ni , fi =
Enini ∈ Mi(Di) from Lemma 3.5. Note that (01, . . . , 0i−1, ei, 0i+1, . . . , 0n) and
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(01, . . . , 0i−1, fi, 0i+1, . . . , 0n) ∈ I(R/J) are also minimal idempotents in R/J
where 0j is the additive identity of Mj(Dj) for all j = 1, . . . , n. Since R is
semiperfect, every idempotent of R/J can be lifted to R, and so there exist
idempotents e, f such that ē = (01, . . . , 0i−1, ei, 0i+1, . . . , 0n), f̄ = (01, . . . , 0i−1,
fi, 0i+1, . . . , 0n). By Proposition 3.6, e and f are minimal idempotents of R.
Since eifi ̸= 0i with (eifi)

2 = 0i, ēf̄ ̸= 0 with (ēf̄)2 = 0, that is, ef /∈ J with
(ef)2 ∈ J . Thus ef is a nonzero nilpotent of R, and so Im(R) is not closed
under multiplication, which is a contradiction. Therefore, R/J is a direct sum
of division rings. Let e ∈ I(R) be arbitrary, and let g be a unit in G. Since
every idempotent in R/J is central, we have that (e + J)(g + J)(e + J)(e +
J)(g−1 + J)(e + J) = (e + J)(g−1 + J)(e + J)(e + J)(g + J)(e + J) = e + J .
Thus (ege)(eg−1e) = e+ j1 = e+ ej1e and (eg−1e)(ege) = e+ j2 = e+ ej2e for
some j1, j2 ∈ J . Since ej1e, ej2e ∈ J and J is a nil ideal of R, ej1e and ej2e are
nilpotents in eRe, and hence e+ ej1e and e+ ej2e are units in eRe. Therefore,
ege is a unit in eRe. □

Corollary 3.8. Let R be a left Artinian ring with identity 1 such that 2 is a
unit in R. Then the following are equivalent:

(1) I(R) is closed under multiplication;
(2) R is a direct sum of local rings;
(3) Im(R) is closed under multiplication.

Proof. It follows from Theorem 3.4 and Theorem 3.7. □
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