ON THE STABILITY OF BI-DERIVATIONS IN BANACH ALGEBRAS

YONG-SOO JUNG AND KYOO-HONG PARK

ABSTRACT. Let $\mathcal A$ be a Banach algebra and let $f:\mathcal A\times\mathcal A\to\mathcal A$ be an approximate bi-derivation in the sense of Hyers-Ulam-Rassias. In this note, we proves the Hyers-Ulam-Rassias stability of bi-derivations on Banach algebras. If, in addition, $\mathcal A$ is unital, then $f:\mathcal A\times\mathcal A\to\mathcal A$ is an exact bi-derivation. Moreover, if $\mathcal A$ is unital, prime and f is symmetric, then f=0.

1. Introduction

Let \mathcal{A} be an algebra over the real or complex field \mathbb{F} . An additive mapping $d: \mathcal{A} \to \mathcal{A}$ is said to be a *ring derivation* if d(xy) = xd(y) + d(x)y holds for all $x, y \in \mathcal{A}$. A bi-additive mapping $\Delta: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$, which is additive in both arguments, is called a *bi-derivation* if

$$\Delta(xy, z) = x\Delta(y, z) + \Delta(x, z)y$$

and

$$\Delta(x, yz) = y\Delta(x, z) + \Delta(x, y)z$$

hold for all $x,y,z\in\mathcal{A}$. In particular, if $\Delta(x,y)=\Delta(y,x)$ is valid for all $x,y\in\mathcal{A}$, it is said that Δ is symmetric. The concept of a symmetric biderivation was introduced by Gy. Maksa in [11]. It was shown in [9] that symmetric bi-derivations are related to general solutions of some functional equations.

Recently, T. Miura et al. [12] considered the stability of ring derivations on Banach algebras: Under suitable conditions, every approximate ring derivation f on a Banach algebra \mathcal{A} is an exact ring derivation. If \mathcal{A} is a commutative semisimple Banach algebra with the maximal ideal space without isolated points, then f is identically zero.

The study of stability problems originated from a question by S. M. Ulam [19] in 1940: *Under what condition does there exist a homomorphism near an approximate homomorphism?* In 1941, D. H. Hyers [8] gave a first affirmative

Received February 1, 2010; Revised January 3, 2011.

 $2010\ Mathematics\ Subject\ Classification.\ 39B72,\ 39B52.$

Key words and phrases. bi-derivation, approximate bi-derivation, stability.

answer to the question of Ulam for Banach spaces, which states that if $\delta > 0$ and $f: \mathcal{X} \to \mathcal{Y}$ is a mapping with \mathcal{X} a normed space, \mathcal{Y} a Banach space such that

$$||f(x+y) - f(x) - f(y)|| \le \delta$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T : \mathcal{X} \to \mathcal{Y}$ such that

$$||f(x) - T(x)|| \le \delta$$

for all $x \in \mathcal{X}$.

A generalized version of the theorem of Hyers for approximately additive mappings was first given by T. Aoki [1] in 1950. In 1978, Th. M. Rassias [16] independently introduced the unbounded Cauchy difference and was the first to prove the stability of the linear mapping between Banach spaces: If there exist a $\theta > 0$ and p < 1 such that

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p)$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T : \mathcal{X} \to \mathcal{Y}$ such that

(1.2)
$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in \mathcal{X}$. Also, if f(tx) is continuous in all real t for each fixed x in \mathcal{X} , then T is linear. If p < 0 and the inequality (1.1) holds for $x, y \neq 0$, then the inequality (1.2) for $x \neq 0$. In 1991, Z. Gajda [6] answered the question for the case p > 1, which was raised by Th. M. Rassias. He [6] also gave an example that the Rassias' stability result is not valid for p = 1.

During the last thirty years, a number of results concerning the stability have been obtained by various ways [5, 7, 10, 13, 17], and been applied to a number of functional equations and mappings. In particular, Badora [2], Bae and Park [3], Park [14], Rassias and Kim [15], Šemrl [18] have contributed works to the stability problem of derivations.

Suppose that \mathcal{A} is a Banach algebra. For a given mapping $f: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$, we define

$$C_1 f(x, y, z) = f(x + y, z) - f(x, z) - f(y, z),$$

$$C_2 f(x, y, z) = f(x, y + z) - f(x, y) - f(x, z),$$

$$D_1 f(x, y, z) = f(xy, z) - x f(y, z) - f(x, z)y,$$

$$D_2 f(x, y, z) = f(x, yz) - y f(x, z) - f(x, y)z$$

for all $x, y, z \in \mathcal{A}$.

In this note, we will deal with the following type of approximate bi-derivations in the sense of Hyers-Ulam-Rassias, that is, let p,q,θ,ε be real numbers with $p,q \neq 1$ and $\theta,\varepsilon > 0$. We consider a mapping $f: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ with the properties

$$(1.3) ||C_1 f(x, y, z)|| \le \theta(||x||^p + ||y||^p)||z||^q,$$

$$||C_2 f(x, y, z)|| \le \theta ||x||^p (||y||^p + ||z||^q),$$

$$||D_1 f(x, y, z)|| < \varepsilon ||x||^p ||y||^p ||z||^q,$$

$$(1.6) ||D_2 f(x, y, z)|| \le \varepsilon ||x||^p ||y||^q ||z||^q$$

for all $x, y, z \in \mathcal{A}$. In addition, we will investigate approximate bi-derivations which become zero.

2. Stability of bi-derivations

In this section, \mathbb{R} , \mathbb{Q} and \mathbb{N} will denote the set of the real, the rational and the natural numbers, respectively.

Theorem 2.1. Let \mathcal{A} be a Banach algebra. Suppose that $f: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is a mapping satisfying the inequalities $(1.3) \sim (1.6)$ for some $\theta, \varepsilon > 0$ and some $p, q \in \mathbb{R} \setminus \{1\}$. If p, q < 1 or p, q > 1, then there exists a unique bi-derivation $\Delta: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ such that

for all $x, z \in \mathcal{A}$, where $K(p, q, \theta) = \frac{\theta}{2} \left(\frac{1}{|2-2^p|} + \frac{1}{|2-2^q|} \right)$. If p, q < 0 and the inequalities $(1.3) \sim (1.6)$ hold for $x, y, z \neq 0$, then the inequality (2.1) holds for $x, z \neq 0$.

Proof. Assume that $\tau = 1$ if p, q < 1 and $\tau = -1$ if p, q > 1. By (1.3), for each fixed $z \in \mathcal{A}$, the function $f_z(x) = f(x, z)$ satisfies the inequality

$$(2.2) ||f_z(x+y) - f_z(x) - f_z(y)|| \le \theta(||x||^p + ||y||^p)||z||^q$$

for all $x, y \in \mathcal{A}$. So, from the results of Rassias [16] and Gajda [6], the inequality (2.2) guarantees that there exists a unique additive mapping $A_z: \mathcal{A} \to \mathcal{A}$ defined by $A_z(x) = \lim_{n \to \infty} 2^{-\tau n} f_z(2^{\tau n} x)$ for all $x \in \mathcal{A}$ such that

$$||A_z(x) - f_z(x)|| \le \frac{\theta}{|2 - 2^p|} ||x||^p ||z||^q$$

for all $x \in \mathcal{A}$. Now, let us define $A_1(x, z) = A_z(x)$ for all $x, z \in \mathcal{A}$. Then A_1 is additive in the first variable, i.e., $C_1A_1(x, y, z) = 0$ for all $x, y, z \in \mathcal{A}$.

By (1.4), for each fixed $x \in \mathcal{A}$, the function $f_x(z) = f(x,z)$ satisfies the inequality

$$(2.3) ||f_x(y+z) - f_x(y) - f_x(z)|| \le \theta ||x||^p (||y||^q + ||z||^q)$$

for all $y, z \in \mathcal{A}$. From the results of Rassias [16] and Gajda [6], the inequality (2.3) implies that there exists a unique additive mapping $A_x : \mathcal{A} \to \mathcal{A}$ defined by $A_x(z) = \lim_{z \to \infty} 2^{-\tau n} f_x(2^{\tau n} z)$ for all $z \in \mathcal{A}$ such that

$$||A_x(z) - f_x(z)|| \le \frac{\theta}{|2 - 2^p|} ||x||^p ||z||^q$$

for all $z \in \mathcal{A}$. Let $A_2(x, z) = A_z(x)$ for all $x, z \in \mathcal{A}$. Then A_2 is additive in the second variable, i.e., $C_2A_2(x, y, z) = 0$ for all $x, y, z \in \mathcal{A}$. By (1.3), (1.4) and the definitions of A_1 and A_2 , we get

$$C_2 A_1(x, y, z) = 0,$$

 $C_1 A_2(x, y, z) = 0$

for all $x, y, z \in \mathcal{A}$. Indeed, we see that

$$||2^{-\tau n} f(2^{\tau n} x, y + z) - 2^{-\tau n} f(2^{\tau n} x, y) - 2^{-\tau n} f(2^{\tau n} x, z)||$$

$$\leq 2^{\tau n(p-1)} \theta ||x||^p (||y||^q + ||z||^q) \to 0 \quad \text{as} \quad n \to \infty$$

for all $x, y, z \in \mathcal{A}$. Hence we get

$$A_1(x, y + z) - A_1(x, y) - A_1(x, z) = 0,$$

i.e., $C_2A_1(x, y, z) = 0$ for all $x, y, z \in A$. Similarly, it follows that $C_1A_2(x, y, z) = 0$ holds for all $x, y, z \in A$. We define a mapping $\Delta : A \times A \to A$ by

$$\Delta(x,z) = \frac{1}{2} [A_1(x,z) + A_2(x,z)]$$

for all $x, z \in \mathcal{A}$. Then we conclude that Δ is bi-additive and the inequality

$$\|\Delta(x,z) - f(x,z)\| = \left\| \frac{1}{2} [A_1(x,z) + A_2(x,z)] - f(x,z) \right\|$$

$$= \frac{1}{2} \|A_1(x,z) + A_2(x,z) - 2f(x,z)\|$$

$$\leq \frac{1}{2} [\|A_1(x,z) - f(x,z)\| + \|A_2(x,z) - f(x,z)\|]$$

$$\leq \frac{\theta}{2} \left(\frac{1}{|2 - 2^p|} + \frac{1}{|2 - 2^q|} \right) \|x\|^p \|z\|^q$$

holds for all $x, z \in \mathcal{A}$. We now want to prove that Δ is unique. Let $K(p,q,\theta) = \frac{\theta}{2} \left(\frac{1}{|2-2^p|} + \frac{1}{|2-2^q|} \right)$, where p,q < 1 or p,q > 1. Assume that there exists another one, denoted by $\Delta' : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$. Then there exist constants $\theta_1 > 0$ and $p_1, q_1 < 1$ or $\theta_1 > 0$ and $p_1, q_1 > 1$ such that

$$\|\Delta'(x,z) - f(x,z)\| \le K(p_1,q_1,\theta_1) \|x\|^{p_1} \|z\|^{q_1}$$

for all $x, z \in \mathcal{A}$ which yields

$$\|\Delta(x,z) - \Delta'(x,z)\| \le \|\Delta(x,z) - f(x,z)\| + \|f(x,z) - \Delta'(x,z)\|$$

$$\le K(p,q,\theta) \|x\|^p \|z\|^q + k(p_1,q_1,\theta_1) \|x\|^{p_1} \|z\|^{q_1}$$

for all $x, z \in \mathcal{A}$. Therefore we have

$$\begin{split} \|\Delta(x,z) - \Delta'(x,z)\| &= n^{-2\tau} \|\Delta(n^{\tau}x, n^{\tau}z) - \Delta'(n^{\tau}x, n^{\tau}z)\| \\ &\leq n^{-2\tau} \left(K(p,q,\theta) \|n^{\tau}x\|^{p} \|n^{\tau}z\|^{q} \right. \\ &+ K(p_{1},q_{1},\theta_{1}) \|n^{\tau}x\|^{p_{1}} \|n^{\tau}z\|^{q_{1}}) \end{split}$$

$$= n^{\tau(p+q-2)} K(p,q,\theta) ||x||^p ||z||^q$$
$$+ n^{\tau(p_1+q_1-2)} K(p_1,q_1,\theta_1) ||x||^{p_1} ||z||^{q_1}$$

for all $x, z \in \mathcal{A}$. By letting $n \to \infty$, we get $\Delta(x, z) = \Delta'(x, z)$ for all $x, z \in \mathcal{A}$. Now, we claim that Δ is a bi-derivation. Since Δ is bi-additive, we see that $\Delta(x, z) = 2^{-\tau n} \Delta(2^{\tau n} x, z)$ and $\Delta(x, z) = 2^{-\tau n} \Delta(z, z^{\tau n} z)$ holds for all $x, z \in \mathcal{A}$ and all $n \in \mathbb{N}$. First, it follows from (2.1) that

$$\begin{split} \|\Delta(x,z) - 2^{-2\tau n} f(2^{\tau n} x, 2^{\tau n} z)\| &= 2^{-2\tau n} \|\Delta(2^{\tau n} x, 2^{\tau n} z) - f(2^{\tau n} x, 2^{\tau n} z)\| \\ &\leq 2^{-2\tau n} K(p,q,\theta) \|2^{\tau n} x\|^p \|2^{\tau n} z\|^q \\ &= 2^{\tau (p+q-2)n} K(p,q,\theta) \|x\|^p \|z\|^q \end{split}$$

for all $x, z \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p+q-2) < 0$, we have

(2.4)
$$\|\Delta(x,z) - 2^{-2\tau n} f(2^{\tau n} x, 2^{\tau n} z)\| \to 0 \text{ as } n \to \infty$$

for all $x, z \in A$. Following the similar argument as the above, we obtain

$$\|\Delta(xy,z) - 2^{-3\tau n} f(2^{2\tau n} xy, 2^{\tau n} z)\| \leq 2^{\tau (2p+q-3)n} K(p,q,\theta) \|x\|^p \|z\|^q$$

for all $x, y, z \in \mathcal{A}$ and all $n \in \mathbb{N}$, and so

(2.5)
$$\|\Delta(xy,z) - 2^{-3\tau n} f(2^{2\tau n} xy, 2^{\tau n} z)\| \to 0 \text{ as } n \to \infty.$$

Since f satisfies (1.5), we get

$$\begin{split} &\|2^{-3\tau n}f(2^{2\tau n}xy,2^{\tau n}z)-2^{-2\tau n}xf(2^{\tau n}y,2^{\tau n}z)-f(2^{\tau n}x,2^{\tau n}z)2^{-2\tau n}y\|\\ &=2^{-3\tau n}\|f((2^{\tau n}x)(2^{\tau n}y),2^{\tau n}z)-2^{\tau n}xf(2^{\tau n}y,2^{\tau n}z)-f(2^{\tau n}x,2^{\tau n}z)2^{\tau n}y\|\\ &\leq 2^{-3\tau n}\varepsilon\|2^{\tau n}x\|^p\|2^{\tau n}y\|^p\|2^{\tau n}z\|^q\\ &=2^{\tau(2p+q-3)n}\varepsilon\|x\|^p\|y\|^p\|z\|^q \end{split}$$

for all $x, y, z \in \mathcal{A}$ and all $n \in \mathbb{N}$. From reminding of $\tau(2p+q-3) < 0$, it follows that

$$||2^{-3\tau n} f(2^{2\tau n} xy, 2^{\tau n} z) - 2^{-2\tau n} x f(2^{\tau n} y, 2^{\tau n} z) - 2^{-2\tau n} y f(2^{\tau n} x, 2^{\tau n} z)|| \to 0$$

as $n \to \infty$. Using (2.4), (2.5) and (2.6), we see that

$$\begin{split} & \|\Delta(xy,z) - x\Delta(y,z) - \Delta(x,z)y\| \\ & \leq \|\Delta(xy,z) - 2^{-3\tau n} f(2^{2\tau n} xy, 2^{\tau n} z)\| \\ & + \|2^{-3\tau n} f(2^{2\tau n} xy, 2^{\tau n} z) - 2^{-2\tau n} x f(2^{\tau n} y, 2^{\tau n} z) - 2^{-\tau n} y f(2^{\tau n} x, 2^{\tau n} z)\| \\ & + \|x\Delta(y,z) - 2^{-2\tau n} x f(2^{\tau n} y, 2^{\tau n} z)\| + \|\Delta(x,z)y - f(2^{\tau n} x, 2^{\tau n} z)2^{-2\tau n} y\| \\ & \leq \|\Delta(xy,z) - 2^{-3\tau n} f(2^{2\tau n} xy, 2^{\tau n} z)\| \end{split}$$

$$+ \|2^{-3\tau n} f(2^{2\tau n} x y, 2^{\tau n} z) - 2^{-2\tau n} x f(2^{\tau n} y, 2^{\tau n} z) - 2^{-\tau n} y f(2^{\tau n} x, 2^{\tau n} z)\|$$

$$+ \|x\| \|\Delta(y, z) - 2^{-2\tau n} f(2^{\tau n} y, 2^{\tau n} z)\| + \|\Delta(x, z) - f(2^{\tau n} x, 2^{\tau n} z)2^{-2\tau n}\| \|y\|$$

and so taking the limit as $n \to \infty$ implies that $\Delta(xy, z) = x\Delta(y, z) + \Delta(x, z)y$ is valid for all $x, y, z \in \mathcal{A}$. Since f also satisfies (1.6), we deduce that $\Delta(x, yz) = y\Delta(x, z) + \Delta(x, y)z$ holds for all $x, y, z \in \mathcal{A}$ by applying the same method as above. That is, Δ is a bi-derivation as claimed and the proof is complete. \square

Lemma 2.2. Let \mathcal{A} be a unital Banach algebra. Suppose that $f: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is a mapping satisfying the inequalities $(1.3) \sim (1.6)$ for some $\theta, \varepsilon > 0$ and some $p, q \in \mathbb{R} \setminus \{1\}$. If p, q < 1 or p, q > 1, then we have

$$f(rx, ry) = r^2 f(x, y)$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q}$.

Proof. Let e be a unit element of \mathcal{A} and $r \in \mathbb{Q} \setminus \{0\}$ arbitrarily. Put $\tau = 1$ if p, q < 1 and $\tau = -1$ if p, q > 1. Then we see that $\tau(p-1) < 0$ and $\tau(q-1) < 0$. By Theorem 2.1, there exists a unique bi-derivation $\Delta : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ satisfying the inequality (2.1). Recall that Δ is bi-additive, and hence it is easy to see that $\Delta(rx, y) = r\Delta(x, y)$ and $\Delta(x, ry) = r\Delta(x, y)$ for all $x, y \in \mathcal{A}$. Then we obtain that f(rx, y) = rf(x, y) for all $x, y \in \mathcal{A}$. For,

$$\begin{split} & \|\Delta((2^{\tau n}e)(rx), y) - r2^{\tau n}ef(x, y) - f(2^{\tau n}e, y)rx\| \\ & \leq r \|\Delta(2^{\tau n}ex, y) - f(2^{\tau n}ex, y)\| \\ & + r \|f(2^{\tau n}ex, y) - 2^{\tau n}ef(x, y) - f(2^{\tau n}e, y)x\| \end{split}$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. Now the inequalities (1.5) and (2.1) yield that

$$\|\Delta((2^{\tau n}e)(rx), y) - r2^{\tau n}ef(x, y) - f(2^{\tau n}e, y)rx\|$$

$$\leq rK(p, q, \theta)\|2^{\tau n}ex\|^p\|y\|^q + r\varepsilon\|2^{\tau n}e\|^p\|x\|^p\|y\|^q$$

$$= 2^{\tau pn} r(K(p, q, \theta) + \varepsilon)\|x\|^p\|y\|^q$$
(2.7)

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$.

It follows from (2.1) and (2.7) that

$$\begin{split} & \|f((2^{\tau n}e)(rx),y) - r2^{\tau n}ef(x,y) - f(2^{\tau n}e,y)rx\| \\ & \leq \|f((2^{\tau n}e)(rx),y) - \Delta((2^{\tau n}e)(rx),y)\| \\ & + \|\Delta((2^{\tau n}e)(rx),y) - r2^{\tau n}ef(x,y) - f(2^{\tau n}e,y)rx\| \\ & \leq K(p,q,\theta)\|(2^{\tau n}e)(rx)\|^p\|y\|^q + 2^{\tau pn}r\big(K(p,q,\theta) + \varepsilon\big)\|x\|^p\|y\|^q \\ & = 2^{\tau pn}K(p,q,\theta)(|r|^p + r)\|x\|^p\|y\|^q + 2^{\tau pn}r\varepsilon\|x\|^p\|y\|^q \end{split}$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. That is, we have

$$||f((2^{\tau n}e)(rx), y) - r2^{\tau n}ef(x, y) - f(2^{\tau n}e, y)rx||$$

$$< 2^{\tau pn}K(p, q, \theta)(|r|^p + r)||x||^p||y||^q + 2^{\tau pn}r\varepsilon||x||^p||y||^q$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. From (1.5) and (2.8), we obtain

$$\begin{split} &\|2^{\tau n}\{f(rx,y)-rf(x,y)\}\|\\ &=\|2^{\tau n}e\{f(rx,y)-rf(x,y)\}\| \end{split}$$

$$\leq \|2^{\tau n} e f(rx, y) + f(2^{\tau n} e, y) rx - f((2^{\tau n} e)(rx), y)\| + \|f((2^{\tau n} e)(rx), y) - r2^{\tau n} e f(x, y) - f(2^{\tau n} e, y) rx\| \leq \varepsilon \|2^{\tau n} e\|^p \|rx\|^p \|y\|^q + 2^{\tau pn} K(p, q, \theta) (|r|^p + r) \|x\|^p \|y\|^q + 2^{\tau pn} r\varepsilon \|x\|^p \|y\|^q = 2^{\tau pn} (|r|^p + r) (K(p, q, \theta) + \varepsilon) \|x\|^p \|y\|^q$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. This means that

(2.9)
$$||f(rx,y) - rf(x,y)|| \le 2^{\tau(p-1)n} (|r|^p + r) (K(p,q,\theta) + \varepsilon) ||x||^p ||y||^q$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p-1) < 0$ and r was arbitrary, if we take $n \to \infty$ in (2.9), then we arrive at

$$f(rx, y) = rf(x, y)$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q} \setminus \{0\}$. By the similar process, we also obtain that

$$f(x, ry) = rf(x, y)$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q} \setminus \{0\}$. Consequently, we find that

$$f(rx, ry) = r^2 f(x, y)$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q} \setminus \{0\}$. It is obvious that f(0x, 0y) = f(0, 0) = 0 = 0 f(x, y) for all $x, y \in \mathcal{A}$. This completes the proof.

Our main result is as follows:

Theorem 2.3. Let \mathcal{A} be a unital Banach algebra. Suppose that $f: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is a mapping satisfying the inequalities $(1.3) \sim (1.6)$ for some $\theta, \varepsilon > 0$ and some $p, q \in \mathbb{R} \setminus \{1\}$. If p, q < 1 or p, q > 1, then $f: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is a bi-derivation.

Proof. Let Δ be a unique bi-derivation as in Theorem 2.1. Put $\tau=1$ if p,q<1 and $\tau=-1$ if p,q>1. Since $f(2^{\tau n}x,2^{\tau n}y)=2^{2\tau n}f(x,y)$ for all $x,y\in\mathcal{A}$ and all $n\in\mathbb{N}$ by Lemma 2.2, it follows from (2.1) that

$$\begin{aligned} \|f(x,y) - \Delta(x,y)\| &= \|2^{-2\tau n} f(2^{\tau n} x, 2^{\tau n} y) - 2^{-\tau n} \Delta(2^{\tau n} x, 2^{\tau n} y)\| \\ &\leq 2^{-2\tau n} K(p,q,\theta) \|2^{\tau n} x\|^p \|2^{\tau n} y\|^q \\ &= 2^{\tau(p+q-2)n} K(p,q,\theta) \|x\|^p \|y\|^q \end{aligned}$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. Namely,

$$(2.10) ||f(x,y) - \Delta(x,y)|| \le 2^{\tau(p+q-2)n} K(p,q,\theta) ||x||^p ||y||^q$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p+q-2) < 0$, if we let $n \to \infty$ in (2.10), then we conclude that $f(x,y) = \Delta(x,y)$ for all $x,y \in \mathcal{A}$ which implies that f is a bi-derivation. The proof is complete

M. Brešar [4, Theorem 3.5] proved that if Δ is a symmetric bi-derivation on noncommutative 2-torsion free prime rings, then we have $\Delta=0$. The following is the Brešar's result for approximate bi-derivations.

Corollary 2.4. Let A be a unital Banach algebra which is prime. Suppose that $f: A \times A \to A$ is a symmetric mapping satisfying (1.3) and (1.5) for some $\theta, \varepsilon > 0$ and some $p, q \in \mathbb{R} \setminus \{1\}$. If p, q < 1 or p, q > 1, then we have f = 0.

Proof. Applying Theorem 2.3, we see that f is a symmetric bi-derivation. Hence we have f=0 by Brešar's result [4, Theorem 3.5] which completes the proof.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
- [2] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167–173.
- [3] J.-H. Bae and W.-G. Park, Approximate bi-homomorphisms and bi-derivations in C*-ternary algebras, Bull. Korean Math. Soc. 47 (2010), no. 1, 195–209.
- [4] M. Brešar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361–397.
- [5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
- [6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431–434.
- [7] P. Găvruță, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.
- [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222–224.
- [9] ______, A remark on symmetric bi-additive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15(35) (1980), 279–282.
- [10] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.
- [11] Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303–307.
- [12] T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), no. 2, 522–530.
- [13] C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111–118.
- [14] C. Park and J. Hou, Homomorphisms between C*-algebras associated with the Trif functional equation and linear derivations on C*-algebras, J. Korean Math. Soc. 41 (2004), no. 3, 461–477.
- [15] J. M. Rassias and H.-M. Kim, Approximate homomorphisms and derivations between C*-ternary algebras, J. Math. Phys. 49 (2008), no. 6, 10 pp.
- [16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300.
- [17] _____(Ed.), "Functional Equations and Inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.
- [18] P. Šemrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118–122.
- [19] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.

YONG-SOO JUNG
DEPARTMENT OF MATHEMATICS
SUN MOON UNIVERSITY
ASAN 336-708, KOREA
E-mail address: ysjung@sunmoon.ac.kr

Kyoo-Hong Park
Department of Mathematics Education
Seowon University
Cheongju 361-742, Korea
E-mail address: parkkh@seowon.ac.kr