ON THE STABILITY OF BI-DERIVATIONS IN BANACH ALGEBRAS

Yong-Soo Jung and Kyoo-Hong Park

Abstract

Let \mathcal{A} be a Banach algebra and let $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ be an approximate bi-derivation in the sense of Hyers-Ulam-Rassias. In this note, we proves the Hyers-Ulam-Rassias stability of bi-derivations on Banach algebras. If, in addition, \mathcal{A} is unital, then $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is an exact bi-derivation. Moreover, if \mathcal{A} is unital, prime and f is symmetric, then $f=0$.

1. Introduction

Let \mathcal{A} be an algebra over the real or complex field \mathbb{F}. An additive mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a ring derivation if $d(x y)=x d(y)+d(x) y$ holds for all $x, y \in \mathcal{A}$. A bi-additive mapping $\Delta: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$, which is additive in both arguments, is called a bi-derivation if

$$
\Delta(x y, z)=x \Delta(y, z)+\Delta(x, z) y
$$

and

$$
\Delta(x, y z)=y \Delta(x, z)+\Delta(x, y) z
$$

hold for all $x, y, z \in \mathcal{A}$. In particular, if $\Delta(x, y)=\Delta(y, x)$ is valid for all $x, y \in \mathcal{A}$, it is said that Δ is symmetric. The concept of a symmetric biderivation was introduced by Gy. Maksa in [11]. It was shown in [9] that symmetric bi-derivations are related to general solutions of some functional equations.

Recently, T. Miura et al. [12] considered the stability of ring derivations on Banach algebras: Under suitable conditions, every approximate ring derivation f on a Banach algebra \mathcal{A} is an exact ring derivation. If \mathcal{A} is a commutative semisimple Banach algebra with the maximal ideal space without isolated points, then f is identically zero.

The study of stability problems originated from a question by S. M. Ulam [19] in 1940: Under what condition does there exist a homomorphism near an approximate homomorphism? In 1941, D. H. Hyers [8] gave a first affirmative

Received February 1, 2010; Revised January 3, 2011.
2010 Mathematics Subject Classification. 39B72, 39B52.
Key words and phrases. bi-derivation, approximate bi-derivation, stability.
answer to the question of Ulam for Banach spaces, which states that if $\delta>0$ and $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with \mathcal{X} a normed space, \mathcal{Y} a Banach space such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x \in \mathcal{X}$.
A generalized version of the theorem of Hyers for approximately additive mappings was first given by T. Aoki [1] in 1950. In 1978, Th. M. Rassias [16] independently introduced the unbounded Cauchy difference and was the first to prove the stability of the linear mapping between Banach spaces: If there exist a $\theta>0$ and $p<1$ such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in \mathcal{X}$. Also, if $f(t x)$ is continuous in all real t for each fixed x in \mathcal{X}, then T is linear. If $p<0$ and the inequality (1.1) holds for $x, y \neq 0$, then the inequality (1.2) for $x \neq 0$. In 1991, Z. Gajda [6] answered the question for the case $p>1$, which was raised by Th. M. Rassias. He [6] also gave an example that the Rassias' stability result is not valid for $p=1$.

During the last thirty years, a number of results concerning the stability have been obtained by various ways $[5,7,10,13,17]$, and been applied to a number of functional equations and mappings. In particular, Badora [2], Bae and Park [3], Park [14], Rassias and Kim [15], Šemrl [18] have contributed works to the stability problem of derivations.

Suppose that \mathcal{A} is a Banach algebra. For a given mapping $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$, we define

$$
\begin{aligned}
& C_{1} f(x, y, z)=f(x+y, z)-f(x, z)-f(y, z), \\
& C_{2} f(x, y, z)=f(x, y+z)-f(x, y)-f(x, z), \\
& D_{1} f(x, y, z)=f(x y, z)-x f(y, z)-f(x, z) y, \\
& D_{2} f(x, y, z)=f(x, y z)-y f(x, z)-f(x, y) z
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$.
In this note, we will deal with the following type of approximate bi-derivations in the sense of Hyers-Ulam-Rassias, that is, let $p, q, \theta, \varepsilon$ be real numbers with $p, q \neq 1$ and $\theta, \varepsilon>0$. We consider a mapping $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ with the properties

$$
\begin{equation*}
\left\|C_{1} f(x, y, z)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{q}, \tag{1.3}
\end{equation*}
$$

$$
\begin{align*}
& \left\|C_{2} f(x, y, z)\right\| \leq \theta\|x\|^{p}\left(\|y\|^{p}+\|z\|^{q}\right) \tag{1.4}\\
& \left\|D_{1} f(x, y, z)\right\| \leq \varepsilon\|x\|^{p}\|y\|^{p}\|z\|^{q} \tag{1.5}\\
& \left\|D_{2} f(x, y, z)\right\| \leq \varepsilon\|x\|^{p}\|y\|^{q}\|z\|^{q} \tag{1.6}
\end{align*}
$$

for all $x, y, z \in \mathcal{A}$. In addition, we will investigate approximate bi-derivations which become zero.

2. Stability of bi-derivations

In this section, \mathbb{R}, \mathbb{Q} and \mathbb{N} will denote the set of the real, the rational and the natural numbers, respectively.

Theorem 2.1. Let \mathcal{A} be a Banach algebra. Suppose that $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a mapping satisfying the inequalities (1.3) $\sim(1.6)$ for some $\theta, \varepsilon>0$ and some $p, q \in \mathbb{R} \backslash\{1\}$. If $p, q<1$ or $p, q>1$, then there exists a unique bi-derivation $\Delta: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\|\Delta(x, z)-f(x, z)\| \leq K(p, q, \theta)\|x\|^{p}\|z\|^{q} \tag{2.1}
\end{equation*}
$$

for all $x, z \in \mathcal{A}$, where $K(p, q, \theta)=\frac{\theta}{2}\left(\frac{1}{\left|2-2^{p}\right|}+\frac{1}{\left|2-2^{q}\right|}\right)$. If $p, q<0$ and the inequalities (1.3) $\sim(1.6)$ hold for $x, y, z \neq 0$, then the inequality (2.1) holds for $x, z \neq 0$.

Proof. Assume that $\tau=1$ if $p, q<1$ and $\tau=-1$ if $p, q>1$. By (1.3), for each fixed $z \in \mathcal{A}$, the function $f_{z}(x)=f(x, z)$ satisfies the inequality

$$
\begin{equation*}
\left\|f_{z}(x+y)-f_{z}(x)-f_{z}(y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{q} \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. So, from the results of Rassias [16] and Gajda [6], the inequality (2.2) guarantees that there exists a unique additive mapping $A_{z}: \mathcal{A} \rightarrow \mathcal{A}$ defined by $A_{z}(x)=\lim _{n \rightarrow \infty} 2^{-\tau n} f_{z}\left(2^{\tau n} x\right)$ for all $x \in \mathcal{A}$ such that

$$
\left\|A_{z}(x)-f_{z}(x)\right\| \leq \frac{\theta}{\left|2-2^{p}\right|}\|x\|^{p}\|z\|^{q}
$$

for all $x \in \mathcal{A}$. Now, let us define $A_{1}(x, z)=A_{z}(x)$ for all $x, z \in \mathcal{A}$. Then A_{1} is additive in the first variable, i.e., $C_{1} A_{1}(x, y, z)=0$ for all $x, y, z \in \mathcal{A}$.

By (1.4), for each fixed $x \in \mathcal{A}$, the function $f_{x}(z)=f(x, z)$ satisfies the inequality

$$
\begin{equation*}
\left\|f_{x}(y+z)-f_{x}(y)-f_{x}(z)\right\| \leq \theta\|x\|^{p}\left(\|y\|^{q}+\|z\|^{q}\right) \tag{2.3}
\end{equation*}
$$

for all $y, z \in \mathcal{A}$. From the results of Rassias [16] and Gajda [6], the inequality (2.3) implies that there exists a unique additive mapping $A_{x}: \mathcal{A} \rightarrow \mathcal{A}$ defined by $A_{x}(z)=\lim _{n \rightarrow \infty} 2^{-\tau n} f_{x}\left(2^{\tau n} z\right)$ for all $z \in \mathcal{A}$ such that

$$
\left\|A_{x}(z)-f_{x}(z)\right\| \leq \frac{\theta}{\left|2-2^{p}\right|}\|x\|^{p}\|z\|^{q}
$$

for all $z \in \mathcal{A}$. Let $A_{2}(x, z)=A_{z}(x)$ for all $x, z \in \mathcal{A}$. Then A_{2} is additive in the second variable, i.e., $C_{2} A_{2}(x, y, z)=0$ for all $x, y, z \in \mathcal{A}$. By (1.3), (1.4) and the definitions of A_{1} and A_{2}, we get

$$
\begin{aligned}
& C_{2} A_{1}(x, y, z)=0, \\
& C_{1} A_{2}(x, y, z)=0
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$. Indeed, we see that

$$
\begin{aligned}
& \left\|2^{-\tau n} f\left(2^{\tau n} x, y+z\right)-2^{-\tau n} f\left(2^{\tau n} x, y\right)-2^{-\tau n} f\left(2^{\tau n} x, z\right)\right\| \\
\leq & 2^{\tau n(p-1)} \theta\|x\|^{p}\left(\|y\|^{q}+\|z\|^{q}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$. Hence we get

$$
A_{1}(x, y+z)-A_{1}(x, y)-A_{1}(x, z)=0
$$

i.e., $C_{2} A_{1}(x, y, z)=0$ for all $x, y, z \in \mathcal{A}$. Similarly, it follows that $C_{1} A_{2}(x, y$, $z)=0$ holds for all $x, y, z \in \mathcal{A}$. We define a mapping $\Delta: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\Delta(x, z)=\frac{1}{2}\left[A_{1}(x, z)+A_{2}(x, z)\right]
$$

for all $x, z \in \mathcal{A}$. Then we conclude that Δ is bi-additive and the inequality

$$
\begin{aligned}
\|\Delta(x, z)-f(x, z)\| & =\left\|\frac{1}{2}\left[A_{1}(x, z)+A_{2}(x, z)\right]-f(x, z)\right\| \\
& =\frac{1}{2}\left\|A_{1}(x, z)+A_{2}(x, z)-2 f(x, z)\right\| \\
& \leq \frac{1}{2}\left[\left\|A_{1}(x, z)-f(x, z)\right\|+\left\|A_{2}(x, z)-f(x, z)\right\|\right] \\
& \leq \frac{\theta}{2}\left(\frac{1}{\left|2-2^{p}\right|}+\frac{1}{\left|2-2^{q}\right|}\right)\|x\|^{p}\|z\|^{q}
\end{aligned}
$$

holds for all $x, z \in \mathcal{A}$. We now want to prove that Δ is unique. Let $K(p, q, \theta)=$ $\frac{\theta}{2}\left(\frac{1}{\left|2-2^{p}\right|}+\frac{1}{\left|2-2^{q}\right|}\right)$, where $p, q<1$ or $p, q>1$. Assume that there exists another one, denoted by $\Delta^{\prime}: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$. Then there exist constants $\theta_{1}>0$ and $p_{1}, q_{1}<1$ or $\theta_{1}>0$ and $p_{1}, q_{1}>1$ such that

$$
\left\|\Delta^{\prime}(x, z)-f(x, z)\right\| \leq K\left(p_{1}, q_{1}, \theta_{1}\right)\|x\|^{p_{1}}\|z\|^{q_{1}}
$$

for all $x, z \in \mathcal{A}$ which yields

$$
\begin{aligned}
\left\|\Delta(x, z)-\Delta^{\prime}(x, z)\right\| & \leq\|\Delta(x, z)-f(x, z)\|+\left\|f(x, z)-\Delta^{\prime}(x, z)\right\| \\
& \leq K(p, q, \theta)\|x\|^{p}\|z\|^{q}+k\left(p_{1}, q_{1}, \theta_{1}\right)\|x\|^{p_{1}}\|z\|^{q_{1}}
\end{aligned}
$$

for all $x, z \in \mathcal{A}$. Therefore we have

$$
\begin{aligned}
& \left\|\Delta(x, z)-\Delta^{\prime}(x, z)\right\|=n^{-2 \tau}\left\|\Delta\left(n^{\tau} x, n^{\tau} z\right)-\Delta^{\prime}\left(n^{\tau} x, n^{\tau} z\right)\right\| \\
& \leq n^{-2 \tau}\left(K(p, q, \theta)\left\|n^{\tau} x\right\|^{p}\left\|n^{\tau} z\right\|^{q}\right. \\
& \left.+K\left(p_{1}, q_{1}, \theta_{1}\right)\left\|n^{\tau} x\right\|^{p_{1}}\left\|n^{\tau} z\right\|^{q_{1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =n^{\tau(p+q-2)} K(p, q, \theta)\|x\|^{p}\|z\|^{q} \\
& \quad+n^{\tau\left(p_{1}+q_{1}-2\right)} K\left(p_{1}, q_{1}, \theta_{1}\right)\|x\|^{p_{1}}\|z\|^{q_{1}}
\end{aligned}
$$

for all $x, z \in \mathcal{A}$. By letting $n \rightarrow \infty$, we get $\Delta(x, z)=\Delta^{\prime}(x, z)$ for all $x, z \in \mathcal{A}$.
Now, we claim that Δ is a bi-derivation. Since Δ is bi-additive, we see that $\Delta(x, z)=2^{-\tau n} \Delta\left(2^{\tau n} x, z\right)$ and $\Delta(x, z)=2^{-\tau n} \Delta\left(z, 2^{\tau n} z\right)$ holds for all $x, z \in \mathcal{A}$ and all $n \in \mathbb{N}$. First, it follows from (2.1) that

$$
\begin{aligned}
\left\|\Delta(x, z)-2^{-2 \tau n} f\left(2^{\tau n} x, 2^{\tau n} z\right)\right\| & =2^{-2 \tau n}\left\|\Delta\left(2^{\tau n} x, 2^{\tau n} z\right)-f\left(2^{\tau n} x, 2^{\tau n} z\right)\right\| \\
& \leq 2^{-2 \tau n} K(p, q, \theta)\left\|2^{\tau n} x\right\|^{p}\left\|2^{\tau n} z\right\|^{q} \\
& =2^{\tau(p+q-2) n} K(p, q, \theta)\|x\|^{p}\|z\|^{q}
\end{aligned}
$$

for all $x, z \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p+q-2)<0$, we have

$$
\begin{equation*}
\left\|\Delta(x, z)-2^{-2 \tau n} f\left(2^{\tau n} x, 2^{\tau n} z\right)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

for all $x, z \in \mathcal{A}$. Following the similar argument as the above, we obtain

$$
\left\|\Delta(x y, z)-2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)\right\| \leq 2^{\tau(2 p+q-3) n} K(p, q, \theta)\|x\|^{p}\|z\|^{q}
$$

for all $x, y, z \in \mathcal{A}$ and all $n \in \mathbb{N}$, and so

$$
\begin{equation*}
\left\|\Delta(x y, z)-2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{2.5}
\end{equation*}
$$

Since f satisfies (1.5), we get

$$
\begin{aligned}
& \left\|2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)-2^{-2 \tau n} x f\left(2^{\tau n} y, 2^{\tau n} z\right)-f\left(2^{\tau n} x, 2^{\tau n} z\right) 2^{-2 \tau n} y\right\| \\
= & 2^{-3 \tau n}\left\|f\left(\left(2^{\tau n} x\right)\left(2^{\tau n} y\right), 2^{\tau n} z\right)-2^{\tau n} x f\left(2^{\tau n} y, 2^{\tau n} z\right)-f\left(2^{\tau n} x, 2^{\tau n} z\right) 2^{\tau n} y\right\| \\
\leq & 2^{-3 \tau n} \varepsilon\left\|2^{\tau n} x\right\|^{p}\left\|2^{\tau n} y\right\|^{p}\left\|2^{\tau n} z\right\|^{q} \\
= & 2^{\tau(2 p+q-3) n} \varepsilon\|x\|^{p}\|y\|^{p}\|z\|^{q}
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$ and all $n \in \mathbb{N}$. From reminding of $\tau(2 p+q-3)<0$, it follows that

$$
\begin{equation*}
\left\|2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)-2^{-2 \tau n} x f\left(2^{\tau n} y, 2^{\tau n} z\right)-2^{-2 \tau n} y f\left(2^{\tau n} x, 2^{\tau n} z\right)\right\| \rightarrow 0 \tag{2.6}
\end{equation*}
$$

as $n \rightarrow \infty$. Using (2.4), (2.5) and (2.6), we see that

$$
\begin{aligned}
& \|\Delta(x y, z)-x \Delta(y, z)-\Delta(x, z) y\| \\
\leq & \left\|\Delta(x y, z)-2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)\right\| \\
& +\left\|2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)-2^{-2 \tau n} x f\left(2^{\tau n} y, 2^{\tau n} z\right)-2^{-\tau n} y f\left(2^{\tau n} x, 2^{\tau n} z\right)\right\| \\
& +\left\|x \Delta(y, z)-2^{-2 \tau n} x f\left(2^{\tau n} y, 2^{\tau n} z\right)\right\|+\left\|\Delta(x, z) y-f\left(2^{\tau n} x, 2^{\tau n} z\right) 2^{-2 \tau n} y\right\| \\
\leq & \left\|\Delta(x y, z)-2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)\right\| \\
& +\left\|2^{-3 \tau n} f\left(2^{2 \tau n} x y, 2^{\tau n} z\right)-2^{-2 \tau n} x f\left(2^{\tau n} y, 2^{\tau n} z\right)-2^{-\tau n} y f\left(2^{\tau n} x, 2^{\tau n} z\right)\right\| \\
& +\|x\|\left\|\Delta(y, z)-2^{-2 \tau n} f\left(2^{\tau n} y, 2^{\tau n} z\right)\right\|+\left\|\Delta(x, z)-f\left(2^{\tau n} x, 2^{\tau n} z\right) 2^{-2 \tau n}\right\|\|y\|
\end{aligned}
$$

and so taking the limit as $n \rightarrow \infty$ implies that $\Delta(x y, z)=x \Delta(y, z)+\Delta(x, z) y$ is valid for all $x, y, z \in \mathcal{A}$. Since f also satisfies (1.6), we deduce that $\Delta(x, y z)=$ $y \Delta(x, z)+\Delta(x, y) z$ holds for all $x, y, z \in \mathcal{A}$ by applying the same method as above. That is, Δ is a bi-derivation as claimed and the proof is complete.

Lemma 2.2. Let \mathcal{A} be a unital Banach algebra. Suppose that $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a mapping satisfying the inequalities (1.3) $\sim(1.6)$ for some $\theta, \varepsilon>0$ and some $p, q \in \mathbb{R} \backslash\{1\}$. If $p, q<1$ or $p, q>1$, then we have

$$
f(r x, r y)=r^{2} f(x, y)
$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q}$.
Proof. Let e be a unit element of \mathcal{A} and $r \in \mathbb{Q} \backslash\{0\}$ arbitrarily. Put $\tau=1$ if $p, q<1$ and $\tau=-1$ if $p, q>1$. Then we see that $\tau(p-1)<0$ and $\tau(q-1)<0$. By Theorem 2.1, there exists a unique bi-derivation $\Delta: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ satisfying the inequality (2.1). Recall that Δ is bi-additive, and hence it is easy to see that $\Delta(r x, y)=r \Delta(x, y)$ and $\Delta(x, r y)=r \Delta(x, y)$ for all $x, y \in \mathcal{A}$. Then we obtain that $f(r x, y)=r f(x, y)$ for all $x, y \in \mathcal{A}$. For,

$$
\begin{aligned}
&\left\|\Delta\left(\left(2^{\tau n} e\right)(r x), y\right)-r 2^{\tau n} e f(x, y)-f\left(2^{\tau n} e, y\right) r x\right\| \\
& \leq r\left\|\Delta\left(2^{\tau n} e x, y\right)-f\left(2^{\tau n} e x, y\right)\right\| \\
& \quad+r\left\|f\left(2^{\tau n} e x, y\right)-2^{\tau n} e f(x, y)-f\left(2^{\tau n} e, y\right) x\right\|
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. Now the inequalities (1.5) and (2.1) yield that

$$
\begin{align*}
& \left\|\Delta\left(\left(2^{\tau n} e\right)(r x), y\right)-r 2^{\tau n} e f(x, y)-f\left(2^{\tau n} e, y\right) r x\right\| \\
\leq & r K(p, q, \theta)\left\|2^{\tau n} e x\right\|^{p}\|y\|^{q}+r \varepsilon\left\|2^{\tau n} e\right\|^{p}\|x\|^{p}\|y\|^{q} \\
= & 2^{\tau p n} r(K(p, q, \theta)+\varepsilon)\|x\|^{p}\|y\|^{q} \tag{2.7}
\end{align*}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$.
It follows from (2.1) and (2.7) that

$$
\begin{aligned}
& \left\|f\left(\left(2^{\tau n} e\right)(r x), y\right)-r 2^{\tau n} e f(x, y)-f\left(2^{\tau n} e, y\right) r x\right\| \\
\leq & \left\|f\left(\left(2^{\tau n} e\right)(r x), y\right)-\Delta\left(\left(2^{\tau n} e\right)(r x), y\right)\right\| \\
& +\left\|\Delta\left(\left(2^{\tau n} e\right)(r x), y\right)-r 2^{\tau n} e f(x, y)-f\left(2^{\tau n} e, y\right) r x\right\| \\
\leq & K(p, q, \theta)\left\|\left(2^{\tau n} e\right)(r x)\right\|^{p}\|y\|^{q}+2^{\tau p n} r(K(p, q, \theta)+\varepsilon)\|x\|^{p}\|y\|^{q} \\
= & 2^{\tau p n} K(p, q, \theta)\left(|r|^{p}+r\right)\|x\|^{p}\|y\|^{q}+2^{\tau p n} r \varepsilon\|x\|^{p}\|y\|^{q}
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. That is, we have

$$
\begin{align*}
& \left\|f\left(\left(2^{\tau n} e\right)(r x), y\right)-r 2^{\tau n} e f(x, y)-f\left(2^{\tau n} e, y\right) r x\right\| \\
\leq & 2^{\tau p n} K(p, q, \theta)\left(|r|^{p}+r\right)\|x\|^{p}\|y\|^{q}+2^{\tau p n} r \varepsilon\|x\|^{p}\|y\|^{q} \tag{2.8}
\end{align*}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. From (1.5) and (2.8), we obtain

$$
\begin{aligned}
& \left\|2^{\tau n}\{f(r x, y)-r f(x, y)\}\right\| \\
= & \left\|2^{\tau n} e\{f(r x, y)-r f(x, y)\}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|2^{\tau n} e f(r x, y)+f\left(2^{\tau n} e, y\right) r x-f\left(\left(2^{\tau n} e\right)(r x), y\right)\right\| \\
&+\left\|f\left(\left(2^{\tau n} e\right)(r x), y\right)-r 2^{\tau n} e f(x, y)-f\left(2^{\tau n} e, y\right) r x\right\| \\
& \leq \varepsilon\left\|2^{\tau n} e\right\|^{p}\|r x\|^{p}\|y\|^{q}+2^{\tau p n} K(p, q, \theta)\left(|r|^{p}+r\right)\|x\|^{p}\|y\|^{q}+2^{\tau p n} r \varepsilon\|x\|^{p}\|y\|^{q} \\
&= 2^{\tau p n}\left(|r|^{p}+r\right)(K(p, q, \theta)+\varepsilon)\|x\|^{p}\|y\|^{q}
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. This means that

$$
\begin{align*}
& \|f(r x, y)-r f(x, y)\| \\
\leq & 2^{\tau(p-1) n}\left(|r|^{p}+r\right)(K(p, q, \theta)+\varepsilon)\|x\|^{p}\|y\|^{q} \tag{2.9}
\end{align*}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p-1)<0$ and r was arbitrary, if we take $n \rightarrow \infty$ in (2.9), then we arrive at

$$
f(r x, y)=r f(x, y)
$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q} \backslash\{0\}$. By the similar process, we also obtain that

$$
f(x, r y)=r f(x, y)
$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q} \backslash\{0\}$. Consequently, we find that

$$
f(r x, r y)=r^{2} f(x, y)
$$

for all $x, y \in \mathcal{A}$ and all $r \in \mathbb{Q} \backslash\{0\}$. It is obvious that $f(0 x, 0 y)=f(0,0)=0=$ $0 f(x, y)$ for all $x, y \in \mathcal{A}$. This completes the proof.

Our main result is as follows:
Theorem 2.3. Let \mathcal{A} be a unital Banach algebra. Suppose that $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a mapping satisfying the inequalities (1.3) $\sim(1.6)$ for some $\theta, \varepsilon>0$ and some $p, q \in \mathbb{R} \backslash\{1\}$. If $p, q<1$ or $p, q>1$, then $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a bi-derivation.

Proof. Let Δ be a unique bi-derivation as in Theorem 2.1. Put $\tau=1$ if $p, q<1$ and $\tau=-1$ if $p, q>1$. Since $f\left(2^{\tau n} x, 2^{\tau n} y\right)=2^{2 \tau n} f(x, y)$ for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$ by Lemma 2.2, it follows from (2.1) that

$$
\begin{aligned}
\|f(x, y)-\Delta(x, y)\| & =\left\|2^{-2 \tau n} f\left(2^{\tau n} x, 2^{\tau n} y\right)-2^{-\tau n} \Delta\left(2^{\tau n} x, 2^{\tau n} y\right)\right\| \\
& \leq 2^{-2 \tau n} K(p, q, \theta)\left\|2^{\tau n} x\right\|^{p}\left\|2^{\tau n} y\right\|^{q} \\
& =2^{\tau(p+q-2) n} K(p, q, \theta)\|x\|^{p}\|y\|^{q}
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. Namely,

$$
\begin{equation*}
\|f(x, y)-\Delta(x, y)\| \leq 2^{\tau(p+q-2) n} K(p, q, \theta)\|x\|^{p}\|y\|^{q} \tag{2.10}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p+q-2)<0$, if we let $n \rightarrow \infty$ in (2.10), then we conclude that $f(x, y)=\Delta(x, y)$ for all $x, y \in \mathcal{A}$ which implies that f is a bi-derivation. The proof is complete
M. Brešar [4, Theorem 3.5] proved that if Δ is a symmetric bi-derivation on noncommutative 2-torsion free prime rings, then we have $\Delta=0$. The following is the Brešar's result for approximate bi-derivations.

Corollary 2.4. Let \mathcal{A} be a unital Banach algebra which is prime. Suppose that $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a symmetric mapping satisfying (1.3) and (1.5) for some $\theta, \varepsilon>0$ and some $p, q \in \mathbb{R} \backslash\{1\}$. If $p, q<1$ or $p, q>1$, then we have $f=0$.

Proof. Applying Theorem 2.3, we see that f is a symmetric bi-derivation. Hence we have $f=0$ by Brešar's result [4, Theorem 3.5] which completes the proof.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167-173.
[3] J.-H. Bae and W.-G. Park, Approximate bi-homomorphisms and bi-derivations in C^{*} ternary algebras, Bull. Korean Math. Soc. 47 (2010), no. 1, 195-209.
[4] M. Brešar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361-397.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
[7] P. Gǎvruţǎ, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
[9] , A remark on symmetric bi-additive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15(35) (1980), 279-282.
[10] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.
[11] Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.
[12] T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), no. 2, 522-530.
[13] C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111-118.
[14] C. Park and J. Hou, Homomorphisms between C^{*}-algebras associated with the Trif functional equation and linear derivations on C^{*}-algebras, J. Korean Math. Soc. 41 (2004), no. 3, 461-477.
[15] J. M. Rassias and H.-M. Kim, Approximate homomorphisms and derivations between C^{*}-ternary algebras, J. Math. Phys. 49 (2008), no. 6, 10 pp.
[16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[17] (Ed.), "Functional Equations and Inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.
[18] P. Šemrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118-122.
[19] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.

Yong-Soo Jung
Department of Mathematics
Sun Moon University
Asan 336-708, Korea
E-mail address: ysjung@sunmoon.ac.kr
Kyoo-Hong Park
Department of Mathematics Education
Seowon University
Cheonguu 361-742, Korea
E-mail address: parkkh@seowon.ac.kr

