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ON THE STABILITY OF BI-DERIVATIONS
IN BANACH ALGEBRAS

YoNG-S00 JUNG AND Kyoo-HoNG PARK

ABSTRACT. Let A be a Banach algebra and let f : A x A — A be an ap-
proximate bi-derivation in the sense of Hyers-Ulam-Rassias. In this note,
we proves the Hyers-Ulam-Rassias stability of bi-derivations on Banach
algebras. If, in addition, A is unital, then f : A x A — A is an exact
bi-derivation. Moreover, if A is unital, prime and f is symmetric, then

f=o.

1. Introduction

Let A be an algebra over the real or complex field F. An additive mapping
d: A— A is said to be a ring derivation if d(zy) = xd(y) + d(z)y holds for
all z,y € A. A bi-additive mapping A : A x A — A, which is additive in both
arguments, is called a bi-derivation if

Azy,z) = Ay, z) + Az, 2)y

and

Az,yz) = yA(z, z) + Az, y)z
hold for all z,y,z € A. In particular, if A(z,y) = A(y,x) is valid for all
x,y € A, it is said that A is symmetric. The concept of a symmetric bi-
derivation was introduced by Gy. Maksa in [11]. It was shown in [9] that
symmetric bi-derivations are related to general solutions of some functional
equations.

Recently, T. Miura et al. [12] considered the stability of ring derivations on
Banach algebras: Under suitable conditions, every approximate ring derivation
f on a Banach algebra A is an exact ring derivation. If A is a commuta-
tive semisimple Banach algebra with the maximal ideal space without isolated
points, then f is identically zero.

The study of stability problems originated from a question by S. M. Ulam
[19] in 1940: Under what condition does there exist a homomorphism near an
approzimate homomorphism ¢ In 1941, D. H. Hyers [8] gave a first affirmative
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answer to the question of Ulam for Banach spaces, which states that if § > 0
and f: X — Y is a mapping with X a normed space, Y a Banach space such
that

If(z+y) = @) = Fly)ll <6

for all x,y € X, then there exists a unique additive mapping T : X — Y such
that

1f(z) = T(@)|] <6
forall z e X.

A generalized version of the theorem of Hyers for approximately additive
mappings was first given by T. Aoki [1] in 1950. In 1978, Th. M. Rassias [16]
independently introduced the unbounded Cauchy difference and was the first
to prove the stability of the linear mapping between Banach spaces: If there
exist a 0 > 0 and p < 1 such that

(L.1) 1f(z+y) = f(2) = FWI < 0=l” + [[y]”)

for all x,y € X, then there exists a unique additive mapping T : X — Y such
that
20

(1.2) If (@) =T@)ll < 35—

for all x € X. Also, if f(tx) is continuous in all real t for each fized x in X,
then T is linear. If p < 0 and the inequality (1.1) holds for x,y # 0, then the
inequality (1.2) for x # 0. In 1991, Z. Gajda [6] answered the question for the
case p > 1, which was raised by Th. M. Rassias. He [6] also gave an example
that the Rassias’ stability result is not valid for p = 1.

During the last thirty years, a number of results concerning the stability
have been obtained by various ways [5, 7, 10, 13, 17], and been applied to a
number of functional equations and mappings. In particular, Badora [2], Bae
and Park [3], Park [14], Rassias and Kim [15], Semrl [18] have contributed
works to the stability problem of derivations.

Suppose that A is a Banach algebra. For a given mapping f : A x A — A,
we define

2

Cif(@,y,2) = flz+y,2) — fz,2) = fy, 2),
Cof(w,y,2) = fla,y +2) = fz,y) — f(=,2),
Dif(xy,2) = flay, z) — 2 f(y, 2) = [z, 2)y,
Daf(2,y,2) = f(2,y2) —yf(z,2) = f(z,y)2

for all z,y,z € A.

In this note, we will deal with the following type of approximate bi-deriva-
tions in the sense of Hyers-Ulam-Rassias, that is, let p, ¢, 6, e be real numbers
with p,q # 1 and 0, > 0. We consider a mapping f : A x A — A with the
properties

(1.3) 1CLf (9, 2) | < 0[P + lylIP) =117,
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(1.4) 1C2f (2,5, 2)|| < Ollz(P([lyl|” + []21]1),
(1.5) D1 f (2, y, 2) || < ell]llyl”ll=[17,
(1.6) [1Daf (2,9, 2) || < ell|[P[lyl17]l =]

for all x,y,z € A. In addition, we will investigate approximate bi-derivations
which become zero.

2. Stability of bi-derivations

In this section, R, Q and N will denote the set of the real, the rational and
the natural numbers, respectively.

Theorem 2.1. Let A be a Banach algebra. Suppose that f : Ax A — A is
a mapping satisfying the inequalities (1.3) ~ (1.6) for some 0, > 0 and some
p,qg € R\ {1}. If p, g <1 orp, g > 1, then there exists a unique bi-derivation
A:Ax A— A such that

(2.1) 1A Gz, 2) = f(z, 2)[| < K(p, g, 0)|«]|”[=]|

for all x,z € A, where K(p,q,0) = g(ﬁ + ﬁ) If p,qg < 0 and the
inequalities (1.3) ~ (1.6) hold for x,y,z # 0, then the inequality (2.1) holds for
x,z # 0.

Proof. Assume that 7 =1ifp, g <1land 7 = —11if p, ¢ > 1. By (1.3), for each
fixed z € A, the function f,(z) = f(z, z) satisfies the inequality

(2.2) 1f=(z +y) = fo(@) = L) < O(ll=l” + lw )12

for all z,y € A. So, from the results of Rassias [16] and Gajda [6], the inequality
(2.2) guarantees that there exists a unique additive mapping A, : A — A
defined by A, (z) = lim 277" f,(2™"x) for all € A such that

n— oo

0

14-) = -0l <

[l ][?]=]17

for all x € A. Now, let us define A;(z,2) = A,(z) for all z,z € A. Then 4, is
additive in the first variable, i.e., C1 A1 (z,y,2) =0 for all z,y,z € A.

By (1.4), for each fixed x € A, the function f,(z) = f(z,2) satisfies the
inequality

(2:3) 1fa(y + 2) = fe(y) = Lo (D) < Oll2|P(lyl1? + [12]17)

for all y,z € A. From the results of Rassias [16] and Gajda [6], the inequality
(2.3) implies that there exists a unique additive mapping A4, : A — A defined
by A,(z) = lim 277" f,(27"z) for all z € A such that

n—oo

0
[42(2) = fz(2)|| < MHSEIIPIIZII‘Z
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for all z € A. Let As(z,2) = A,(z) for all 2,z € A. Then A; is additive in the
second variable, i.e., CoAs(x,y,2) = 0 for all z,y,z € A. By (1.3), (1.4) and
the definitions of A; and As, we get

C2Aq(2,y,2) =0,
C1As(x,y,2) =0
for all z,y, z € A. Indeed, we see that
277" f(2T" 2,y +2) — 277" (2T, y) — 27T f (27", 2) ||
< 270Gz [P ([ly| 7 + [12]7) = 0 as n— oo
for all z,y, z € A. Hence we get
Ar(z,y+2) — Ar(z,y) — As(z,2) =0,
ie., CaAi(z,y,z) = 0 for all z,y,z € A. Similarly, it follows that Cy As(z,y,
z) = 0 holds for all z,y,z € A. We define a mapping A : A x A — A by
Afw,2) = 3[Ar(,2) + Aoz, 2)]

for all z,z € A. Then we conclude that A is bi-additive and the inequality

1A(z, 2) = f(x, 2)]| = %[Al(w, z2) + As(x, 2)] = f(=, 2)

= 2141w, 2) + Az, 2) — 2f(z, )]

IN

%[IIAl(w,Z) = [, 2)] + [A2(, 2) — f(z,2)]]

0 1 1
< — p q
<3 (|2_2,,| + |2_2q|)||x|| Iz

holds for all z, z € A. We now want to prove that A is unique. Let K(p,q,0) =

g(|2—12” + |2_12q|>, where p,q < 1 or p,q > 1. Assume that there exists

another one, denoted by A" : A x A — A. Then there exist constants #; > 0
and p1,q1 < 1 or 61 >0 and p1,q; > 1 such that

1A (@,2) = £, | < K (pr, a1, 60 2] 2]
for all z, z € A which yields
I1A(, 2) = A (@, 2]l < A, 2) = fla, )] + 1 f(2,2) = A, 2)]
< K(p, ¢, 0)||z[”l|2]1 + k(p1, g1, 01) =] |2
for all x, z € A. Therefore we have
1Az, 2) = Az, 2)| = n 7| A(n72,n72) = A (n7 2,07 2)]|
<n~*(K(p,q,0)|n"z|"|n"z||
+ K(pr,qu, 01) 07| [n7 2] ")
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= nTPTID K (p,q,0)||]|P||=]|
+ TP K (py g, 60) [P ]|
for all z,z € A. By letting n — oo, we get A(z,z) = Al(x, z) for all z, z € A.
Now, we claim that A is a bi-derivation. Since A is bi-additive, we see that

Az, z) =27 A2z, z) and A(z,z) = 27""A(2,27"2) holds for all z,z € A
and all n € N. First, it follows from (2.1) that

|A(z, 2) — 272 f(27"2, 27" 2) || = 272" || A (272, 27" 2) — f(27"x, 27" 2))||
< 27K (p, q,0)127"x|[P||27" 2|
= 27PN K (p, g, 0) [Pz
for all z,z € A and all n € N. Since 7(p + g — 2) < 0, we have
(2.4) |A(x, 2) — 272 f(27"2,27"2)|| = 0 asn — oo
for all z, z € A. Following the similar argument as the above, we obtain
|A(zy, 2) = 2737 f(25T"ay, 27" z) || < 27CPHITINK (p, ¢, 0) 2|17 2]
for all z,y,z € A and all n € N, and so
(2.5) |A(zy, 2) — 273 (22" xy, 27"2)|| — 0 as n — oo.
Since f satisfies (1.5), we get
2757 (22, 275) — 272 (2, 372) — F(2T, 275)2 Ry |
= 27| (27" 2)(27"y), 27" 2) — 27w (27, 27" 2) — (27", 27" 2)2 7y |
< 2702 |P(|27 [P 127 2|0
= 27CPH e |[Ply||P |||
for all z,y, z € A and all n € N. From reminding of 7(2p+¢—3) < 0, it follows
that

(2.6)
H2—37-nf(227—nxy7 2T7LZ) _ 2—27—n$f(2'rny’ 27%2) _ 2—27—ny']c(27—n$7 2T7LZ) H -0

as n — oo. Using (2.4), (2.5) and (2.6), we see that
1A (zy, 2) — 2A(y, 2) — Az, 2)y]|
< Ay, 2) = 277 f(22 My, 270 2) |
(270 (22, 27) — 27T (27, 27 2) — 27Ty f(27, 2702 |
+2A(y, 2) = 2722 f(27y, 272 || + | Aw, 2)y — F(272, 27" 2) 27yl
< Ay, 2) = 27T f (22 ay, 270 2) |
|27 (22 ey, 27 ) = 27T f (270, 270 2) = 27Ty £(270 e, 27|
+lllAly, 2) = 2727 F27y, 27 2) || + | Alw, 2) = £(272, 27 2) 2727 ||y
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and so taking the limit as n — oo implies that A(xy, 2) = zA(y, 2) + Az, 2)y is
valid for all z,y, 2z € A. Since f also satisfies (1.6), we deduce that A(z,yz) =
yA(z, z) + A(z,y)z holds for all x,y,z € A by applying the same method as
above. That is, A is a bi-derivation as claimed and the proof is complete. [

Lemma 2.2. Let A be a unital Banach algebra. Suppose that f : Ax A — A is
a mapping satisfying the inequalities (1.3) ~ (1.6) for some 0, > 0 and some
p,q € R\ {1}. If p, ¢ <1 orp, g > 1, then we have

flra,ry) = r*f(z,y)
forallz,y € A and all v € Q.

Proof. Let e be a unit element of A and r € Q\ {0} arbitrarily. Put 7 = 1 if
p,qg<land 7= —-1ifp,q > 1. Then we see that 7(p—1) < 0 and 7(¢—1) < 0.
By Theorem 2.1, there exists a unique bi-derivation A : A x A — A satisfying
the inequality (2.1). Recall that A is bi-additive, and hence it is easy to see
that A(rz,y) = rA(z,y) and A(z,ry) = rA(z,y) for all z,y € A. Then we
obtain that f(rz,y) = rf(z,y) for all z,y € A. For,
A2 e)(rz),y) — r2™"ef(z,y) — f(27"e,y)ra||
< rllA@2™ex,y) — f(27"ex, y)||
+rlf(2ex,y) — 2" ef(x,y) — f(27"e,y)z||
for all z,y € A and all n € N. Now the inequalities (1.5) and (2.1) yield that
A2 e)(rz),y) — r2™"ef(z,y) — f(27"e,y)ra|]
< rK(p,q,0)127" ex|P[[yl|? + rel|27"e|[P |z [|” |y]|?
(2.7) = 27" r(K(p,q,0) +¢) [P [[y]|*

for all z,y € Aand all n € N.
It follows from (2.1) and (2.7) that

1F(27"e)(rz),y) —r2™"ef(z,y) — f(2"e,y)rz]|
< [£(@2e)(rz),y) — A((27"e)(rz), y)|
+[|A(R™e)(rz),y) —r2™"ef(x,y) — f(27"e, y)r||
< K(p,q.0)[1(27e)(ra)[P[lyl|? + 277" r (K (p, 4. 0) + &) =] [ly[|?
= 27K (p, ¢, O)(|r[” + ) ||2[[lyl[* + 27" re]|z[["[|y[|*
for all z,y € A and all n € N. That is, we have
1F(27"e)(rz), y) —r2™ef(z,y) — F2"e, y)ra|
(2.8) < 27K (p, ¢, O)(Ir” + )l l[Plly[|? + 277 re |7y (|7
for all z,y € A and all n € N. From (1.5) and (2.8), we obtain

127 {f (ra, y) — rf(z, y)}|
= 27" e{f(rz,y) = rf(z, y)} |
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< |27ef(ra,y) + f27"e, y)ra — f((27"e)(ra), y)||
+1f((27e)(rz),y) —r2™ef(x,y) — f(27"e, y)ra||
<el2™elPlrz|Pllyll® + 277" K (p, ¢, O)(Ir[* + )l l|P[ly[|? + 27" rel|a||”[ly[|?
=277 (|r|P + 1) (K (p, q,0) + ) =P |y[|?
for all z,y € A and all n € N. This means that
1f(ra,y) —rf(zy)l
(2.9) <27 (|r[P 4 1) (K (p, ¢,6) +€) | ]” 9|

for all z,y € A and all n € N. Since 7(p — 1) < 0 and r was arbitrary, if we
take n — oo in (2.9), then we arrive at

flra,y) =rf(z,y)
for all z,y € A and all r € Q\ {0}. By the similar process, we also obtain that
fla,ry) =rf(z,y)
for all z,y € A and all r € Q\ {0}. Consequently, we find that
flra,ry) = 1% f(z,y)

for all z,y € A and all r € Q\ {0}. It is obvious that f(0x,0y) = f(0,0) =0 =
0f(x,y) for all z,y € A. This completes the proof. O

Our main result is as follows:

Theorem 2.3. Let A be a unital Banach algebra. Suppose that f : AXx A — A
is a mapping satisfying the inequalities (1.3) ~ (1.6) for some 6, > 0 and some
p,q € R\{1}. Ifp,q<1orp,qg>1, then f: Ax A— A is a bi-derivation.

Proof. Let A be a unique bi-derivation as in Theorem 2.1. Put 7 = 1ifp,¢ < 1
and 7 = —1if p,¢ > 1. Since f(27"x,27"y) = 227" f(x,y) for all 2,y € A and
all n € N by Lemma 2.2, it follows from (2.1) that

1f(z,y) = Az, y)ll = 2727 f(27e, 2y) — 27T ATz, 27y |
< 277K (p,q, 0)]127x|P]127y |
= 27PN K (p, g, 0) |7y ]|
for all z,y € A and all n € N. Namely,
(2.10) 1f(z,y) = Az, y)|| < 27PH2" K (p, g, 0)|]|P ||y ]|

for all € A and all n € N. Since 7(p + g — 2) < 0, if we let n — oo in (2.10),
then we conclude that f(z,y) = A(x,y) for all z,y € A which implies that f
is a bi-derivation. The proof is complete O

M. Bresar [4, Theorem 3.5] proved that if A is a symmetric bi-derivation on
noncommutative 2-torsion free prime rings, then we have A = 0. The following
is the Bresar’s result for approximate bi-derivations.
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Corollary 2.4. Let A be a unital Banach algebra which is prime. Suppose
that f : Ax A — A is a symmetric mapping satisfying (1.3) and (1.5) for some
0,e >0 and some p,q € R\ {1}. Ifp, ¢ <1 orp, g > 1, then we have f = 0.

Proof. Applying Theorem 2.3, we see that f is a symmetric bi-derivation.
Hence we have f = 0 by Bresar’s result [4, Theorem 3.5] which completes
the proof. O
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