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MATCHING THEOREMS AND

SIMULTANEOUS RELATION PROBLEMS

Mircea Balaj and Lucian Coroianu

Abstract. In this paper we give two matching theorems of Ky Fan type
concerning open or closed coverings of nonempty convex sets in a topo-
logical vector space. One of them will permit us to put in evidence, when

X and Y are convex sets in topological vector spaces, a new subclass of
KKM(X,Y ) different by any admissible class Ac(X,Y ). For this class
of set-valued mappings we establish a KKM-type theorem which will be

then used for obtaining existence theorems for the solutions of two types
of simultaneous relation problems.

1. Introduction

In [7] by using his own generalization of the Knaster-Kuratowski-Mazurkiev-
icz theorem (simply, KKM theorem), Ky Fan obtains a matching theorem
[7, Theorem 3] for open coverings of convex sets. From this, he also obtains
another matching theorem [7, Theorem 4] for closed coverings of convex sets.
Shih [24, Theorem 1] establishes the open version of the KKM principle and
proves that this is equivalent to Fan’s matching theorem for closed covering.
Generalizations of these two matching theorems, involving one or more set-
valued mappings, have been then obtained in [1], [5], [18], [19], [27].

Two new matching theorems will be obtained in this paper. One of them
will permit us to put in evidence, when X and Y are convex sets in topological
vector spaces, a new subclass of KKM(X,Y ) different by any admissible class
Ac(X,Y ) (see [20]). For this class of set-valued mappings a KKM-type theorem
similar to Theorem 7 in [20] will be established.

An abstract variational relation problem was very recently introduced by Luc
[15] (see also Khanh and Luc [10], Lin and Ansari [12], Luc et al. [16], Balaj
and Lin [2] for further studies) as a model for many problems in optimization,
equilibrium theory, variational inclusions or variational inequalities. In [14]
Lin and Wang continue the investigation process in this direction studying
simultaneous variational relation problems.
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Let X,Y and Z be nonempty convex sets in topological vector spaces, F,G :
X ⊸ Y , Q : Y ⊸ Z be set-valued mappings, R1(y, u) be a relation linking
elements y, u ∈ Y and R2(x, z) be a relation linking elements x ∈ X and z ∈ Z.
Motivated by the paper mentioned above, in the last section of the paper we
obtain existence theorems for the following two types of simultaneous relation
problems:

(I) Find (x̄, ȳ) ∈ Gr(F ) such that

(a) R1(ȳ, u) holds for all u ∈ G(x̄),
(b) for each x ∈ X there exists z ∈ Q(ȳ) for which R2(x, z) holds,

and
(II) Find (x̄, ȳ) ∈ Gr(F ) such that

(a) R1(ȳ, u) holds for all u ∈ G(x̄),
(b) for each x ∈ X and z ∈ Q(ȳ), R2(x, z) holds.

2. Preliminaries

In this paper all topological spaces are assumed to be Hausdorff. For a subset
A of a topological vector space, the standard notations coA and A designate
the convex hull and closure of A. To a set-valued mapping T : X ⊸ Y , we
associate the mappings T c : X ⊸ Y , T− : Y ⊸ X, defined by T c(x) = Y \T (x),
T

−
(y) = {x ∈ X : y ∈ T (x)}.
A set-valued mapping T : X ⊸ Y is said to be: (i) upper semicontinuous (in

short, u.s.c.) (respectively, lower semicontinuous (in short, l.s.c.)) if for every
closed subset B of Y the set {x ∈ X : T (x) ∩ B ̸= ∅} (respectively, {x ∈ X :
T (x) ⊆ B}) is closed; (ii) compact if T (X) ⊆ K for some compact set K in Y .
(iii) closed if its graph (that is, the set Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x)})
is a closed subset of X × Y .

Recall (see [13] or [26]) that a set-valued mapping T is l.s.c. if and only if
for any net {xt} in X converging to x ∈ X and each y ∈ T (x) there exist a
subnet {xtα} of {xt} and a net {ytα} converging to y with ytα ∈ T (xtα) for all
α.

Assume that X is a convex subset of a vector space and Y is a topological
space. If S, T : X ⊸ Y are two set-valued mappings such that T (coA) ⊆ S(A)
for each nonempty finite subset A of X, then we say that S is a KKM mapping
with respect to T . A set-valued mapping T : X ⊸ Y is said to have the
KKM property (see [3]) if for any S : X ⊸ Y , KKM mapping with respect

to T , the family {S(x) : x ∈ X} has the finite intersection property. Denote
KKM(X,Y ) = {T : X ⊸ Y : T has the KKM property}.

For topological spaces X and Y , an admissible class Ac(X,Y ) of set-valued
mappings T : X ⊸ Y (see [20]) is one such that each T ∈ Ac(Y,X) is a finite
composition of mappings in a class A satisfying the following conditions:

(i) A contains the class C of (single-valued) continuous functions;
(ii) each T ∈ Ac is u.s.c. with nonempty compact values; and
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(iii) for any polytope P each T ∈ Ac(P, P ) has a fixed point, where the
intermediate spaces are suitable chosen.

It is known that, ifX is a convex set in a topological vector space, any admis-
sible class Ac(X,Y ) is a subclass of KKM(X,Y ) (see [20]). Examples of ad-
missible mappings are the Kakutani mappings (with convex values), the acyclic
mappings (with acyclic values), the Aronszajn mappings (with Rδ values), the
Fan-Browder mappings (Φ mappings) and many others (see [3, 10, 12, 15]).

Definition 1. Let X be a convex set in a topological vector space and Y be
a convex subset of a vector space. A set-valued mapping S : X ⊸ Y is said to
be:

(i) quasiconvex (see [17]) if for each convex subset C of Y , S
−
(C) is convex;

(ii) prequasiconvex if for each convex subset C of Y , S−(C) is convex.

Obviously a quasiconvex mapping is prequasiconvex. It can be easily check
that a convex mapping (that is, a mapping S : X ⊸ Y satisfying λS(x1)+(1−
λ)S(x2) ⊆ S(λx1 + (1− λ)x2) for all x1, x2 ∈ X and λ ∈ [0, 1]) is quasiconvex.

3. Matching theorems

Theorem 1. Let X and Y be nonempty convex sets in two topological vector
spaces, {xi : i ∈ I} be a set of points in X, {Yi : i ∈ I} be an open cover of Y

and T : X ⊸ Y be a set-valued mapping with nonempty values such that T
−
is

prequasiconvex. Suppose that either (i) T is compact, or (ii) the index set I is
finite. Then there exists a nonempty finite set of indices J of I such that

T
(
co{xi : i ∈ J}

)∩ ∩
i∈J

Yi ̸= ∅.

Proof. Suppose first that T is compact. Then Ỹ = T (X) is a compact subset

of Y . Moreover, since T− is prequasiconvex, Ỹ is convex. Since Ỹ ⊆
∪

i∈I Yi,

there exists a finite subset Ĩ of I such that Ỹ ⊆
∪

i∈Ĩ Yi. Replacing Y and I

by Ỹ and Ĩ respectively, case (i) reduces to (ii).
Hence we will consider that the index set I is finite. We may assume, without

loss of generality, that Yi ̸= ∅ and choose yi ∈ T (xi) for each i ∈ I. Suppose
that the conclusion of the theorem is false. Then for any nonempty subset J
of I we have

T
(
co{xi : i ∈ J}

)
⊆

∪
i∈J

Y c
i .

Since
∪

i∈J Y c
i is a closed set, it follows that

T
(
co{xi : i ∈ J}

)
⊆

∪
i∈J

Y c
i .
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Since T (xi) ⊆ T
(
co{xi : i ∈ J}

)
for all i ∈ J , and T

(
co{xi : i ∈ J}

)
is con-

vex, it follows that

co{yi : i ∈ J} ⊆ co
( ∪
i∈J

T (xi)
)
⊆ T

(
co{xi : i ∈ J}

)
,

which implies co{yi : i ∈ J} ⊆
∪

i∈J Y c
i .

It now follows, from the well-known Fan-KKM principle [6], that
∩

i∈I Y
c
i ̸=

∅, which contradicts the fact that {Yi : i ∈ I} is a cover of Y . □
Using as argument the open version of the Fan-KKM principle (see [11] or

[25]) one can prove the following closed version of Theorem 1:

Theorem 2. Let X and Y be nonempty convex sets in two topological vector
spaces, I be a finite index set, {xi : i ∈ I} be a set of points in X and {Yi : i ∈ I}
be a closed cover of Y . If T : X ⊸ Y is a set-valued mapping with nonempty
values such that T− is quasiconvex, then there exists a nonempty finite set of
indices J of I such that

T
(
co{xi : i ∈ J}

)∩ ∩
i∈J

Yi ̸= ∅.

IfX and Y are nonempty convex sets in two topological vector spaces we note

T(X,Y ) = {T : X ⊸ Y | T has nonempty values and T
−
is prequasiconvex}.

We give now two important consequences of Theorem 1. The first one is
Theorem 2.2 in [9].

Theorem 3. If X and Y are nonempty convex sets in two topological vector
spaces, then T(X,Y ) ⊆ KKM(X,Y ).

Proof. Let S be a KKM mapping with respect to T having nonempty closed
values. Suppose that there exists a nonempty finite subset {xi : i ∈ I} of X
such that

∩
i∈I S(xi) = ∅. For each i ∈ I put Yi = S

c

(xi). Then, {Yi : i ∈ I}
is an open cover of Y . By Theorem 1 there exists a nonempty subset J of
I such that T

(
co{xi : i ∈ J}

)∩∩
i∈J Yi ̸= ∅. This relation is equivalent to

T
(
co{xi : i ∈ J}) ⊈

∪
i∈J S(xi) which contradicts the fact that S is a KKM

mapping with respect to T . □

Theorem 4. Let X and Y be nonempty convex sets in two topological vector
spaces. Let T, S : X ⊸ Y be two set-valued mappings with nonempty values
such that:

(i) T ∈ T(X,Y ) is compact;
(ii) S has closed values;
(iii) S is a KKM mapping with respect to T .

Then T (X)
∩∩

x∈X S(x) ̸= ∅.

Proof. By way of contradiction, suppose that T (X)
∩∩

x∈X S(x) = ∅. Then,

denoting by Ỹ = T (X), {Sc(x) ∩ Ỹ : x ∈ X} is an open cover of the compact
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convex set Ỹ . Theorem 1 get a finite subset {xi : i ∈ J} of X such that
T
(
co{xi : i ∈ J}

)∩∩
i∈J Sc(xi) ̸= ∅. But, obviously, this fact contradicts (iii)

and thus the proof is complete. □

Remark 1. A similar result to Theorem 4 has been obtained by Park in [20,
Theorem 7], when X is a convex set in a topological vector space, Y is a
topological space and T ∈ Ac(X,Y ). We show that Theorem 4 and Park’s
result are independent of each other. More precisely, the examples below, prove
that for any admissible class Ac(X,Y ), T(X,Y ) ⊈ Ac(X,Y ), and Ac(X,Y ) ⊈
T(X,Y ).

Let B be the closed unit ball in Rn (n ≥ 2). Let p : Rn → B be the standard
retraction on B, that is,

p(x) =

{
x if x ∈ B,
1

∥x∥x if x ∈ Rn \B.

Since p is a continuous function it belongs to any admissible class Ac(R
n, B).

If C is a convex set in Rn with nonempty interior, disjoint from B, then p(C)
is not a convex set, hence p /∈ T(Rn, B).

Let [a, b] be a compact real interval and f, g be two real-valued convex func-
tions defined on [a, b], such that f(x) < g(x) for all x ∈ [a, b] and at least one
of them is discontinuous in at least one of the endpoints of the interval. Let
T : [a, b] ⊸ R be defined by T (x) = [f(x), g(x)] for each x ∈ [a, b]. By [17,
p.12, Example 2.2], T is convex, hence T ∈ T([a, b],R). Since its graph is not
closed, T is not u.s.c. and consequently T /∈ Ac([a, b],R).

4. Simultaneous relation problems

At the beginning of this section we recall some definitions concerning re-
lations and introduce a new one. Let X and Y be convex sets in topological
vector spaces. We say that a relation R(x, y) linking elements x ∈ X and y ∈ Y
is convex (closed, open, respectively) if the set {(x, y) ∈ X×Y : R(x, y) holds}
is convex (closed, open, respectively). The relation R is said to be convex
(closed, open, respectively) in the first variable if for each y ∈ Y the set
{x ∈ X : R(x, y) holds} is convex (closed, open, respectively). A relation
R on Y × Y is said to be KKM if for every finite subset {y1, . . . , yn} of Y and
every convex combination y of y1, . . . , yn one can find some index i such that
R(y, yi) holds.

Having in mind the concepts of pseudomonotone mappings and weak pseu-
domonotone mappings (see [8]) we give the following:

Definition 2. Let X,Y and Z be nonempty sets, G : X ⊸ Y , Q : Y ⊸ Z
be set-valued mappings, R1(y, u) be a relation linking elements y, u ∈ Y and
R2(x, z) be a relation linking elements x ∈ X and z ∈ Z. We say that:
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(i) R2 is R1 weak pseudomonotone with respect to (Q,G) if the following
implication holds: x ∈ X, y ∈ Y,R1(y, u) holds for all u ∈ G(x) =⇒
R2(x, z) holds for some z ∈ Q(y);

(ii) R2 is R1 pseudomonotone with respect to (Q,G) if the following impli-
cation holds: x ∈ X, y ∈ Y,R1(y, u) holds for all u ∈ G(x) =⇒ R2(x, z)
holds for all z ∈ Q(y).

Theorem 5. Let X,Y and Z be nonempty convex sets in topological vector
spaces, X and Y being compact. Let F,G : X ⊸ Y , Q : Y ⊸ Z be set-valued
mappings, R1(y, u) a relation linking elements y, u ∈ Y and R2(x, z) a relation
linking elements x ∈ X and z ∈ Z. Suppose that:

(i) G ⊆ F , F is u.s.c. and convex with compact convex values, G is l.s.c.
and concave with nonempty values;

(ii) Q is u.s.c.;
(iii) the relation R1 is KKM, closed and convex;
(iv) the relation R2 is closed in the second variable and R

c

2 is convex in
the first variable, where R

c

2 denotes the complement of the relation R2

(that is, R
c

2(x, z) holds if and only if R2(x, z) does not hold);
(v) R2 is R1 weak pseudomonotone with respect to (Q,G).

Then there exists (x̄, ȳ) ∈ Gr(F ) such that

(a) R1(ȳ, u) holds for all u ∈ G(x̄),
(b) for each x ∈ X there exists z ∈ Q(ȳ) for which R2(x, z) holds.

Proof. The proof is divided into three steps.
Step 1. We shall prove that the multivalued mapping T : X ⊸ Y defined

by
T (x) = {y ∈ F (x) : R1(y, u) holds for all u ∈ G(x)}

belongs to T(X,Y ).
For each x ∈ X, T (x) is nonempty. Indeed, let Bx : G(x) ⊸ F (x) be

defined by Bx(u) = {y ∈ F (x) : R1(y, u) holds} for all u ∈ G(x). Since R1

is closed and F (x) is compact, the mapping Bx has compact values. Let A
be a nonempty finite subset of G(x) and y ∈ coA. Then y ∈ F (x) and, since
the relation R1 is KKM, y ∈ Bx(A). Hence Bx is a KKM mapping and by
the Fan-KKM theorem there exists yx ∈ F (x) such that yx ∈

∩
u∈G(x) Bx(u).

Then R1(yx, u) holds for all u ∈ G(x), hence yx ∈ T (x) for each x ∈ X.
Let C be a convex subset of X. We claim that T (C) is convex. Let y1, y2 ∈

T (C) and y = λy1 + (1− λ)y2 a convex combination of y1, y2 (λ ∈ [0, 1]). For
i = 1, 2 there exists xi ∈ C such that yi ∈ F (xi) and R1(yi, u) holds for all u ∈
G(xi). Let x = λx1 + (1− λ)x2. Since C is convex, x ∈ C. Since the mapping
F is convex, y ∈ λF (x1) + (1 − λ)F (x2) ⊆ F (x). For each u ∈ G(x), there
exist u1 ∈ G(x1), u2 ∈ G(x2) such that u = λu1 + (1− λ)u2. Since R1(y1, u1),
R1(y2, u2) hold and R1 is convex, R1(y, u) is satisfied, hence y ∈ T (x) ⊆ T (C).

Step 2. We show that the range of T is compact. Since T (X) is a subset

of the compact Y it suffices to prove that T (X) is closed. Let y ∈ T (X) and
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{yt}t∈∆ a net in T (X) converging to y. For each t ∈ ∆ there exists xt ∈ X
such that yt ∈ F (xt) and R1(yt, u) holds for all u ∈ G(xt). Taking into account
the compactness of X, we may suppose that the net {xt}t∈∆ converges to a
point x ∈ X. Since F is closed, y ∈ F (x). Let u ∈ G(x) be arbitrarily chosen.
Since G is l.s.c., there exist a subnet {xtα} of {xt} and a net {utα} converging
to u with utα ∈ G(xtα) for all α. Since R1(ytα , utα) holds for all α and R1 is
closed, R1(y, u) holds too. So, y ∈ T (x), hence T (X) is closed.

Step 3. Consider the set valued-mappings P : X ⊸ Z and S : X ⊸ Y ,
given by

P (x)={z ∈ Z : R2(x, z) holds}, S(x)={y ∈ Y : P (x)∩Q(y) ̸= ∅} for all x∈X,

By (iv), P (x) is a closed set in Z for each x ∈ X. Since Q is u.s.c., S has
closed values.

We claim that S is a KKM mapping with respect to T . If not, there exists
a finite subset A = {x1, . . . , xn} of X, x ∈ coA and y ∈ T (x) \ S(A). Then,

(1) y ∈ F (x) and R1(y, u) holds for all u ∈ G(x)

and

(2) for each xi ∈ A and z ∈ Q(y), R2(xi, z) does not hold.

Since R
c

2 is convex in the first variable, by (2), R2(x, z) does not hold for all
z ∈ Q(y). On the other hand, by (1) and (v), there exists z ∈ Q(y) such
that R2(x, z) holds; a contradiction. Consequently S is a KKM mapping with
respect to T .

By Theorem 4, there exists ȳ ∈ T (X)
∩∩

x∈X S(x). By ȳ ∈ T (X), there
exists x̄ ∈ X such that ȳ ∈ F (x̄) and R1(ȳ, u) holds for all u ∈ G(x̄). By
ȳ ∈

∩
x∈X S(x), for each x ∈ X there exists z ∈ Q(ȳ) for which R2(x, z) holds.

□

Theorem 6. Let X,Y, Z,Q,G,R1 and R2 be as in Theorem 5. Assume that
conditions (i) and (iii) in Theorem 5 and the following conditions are satisfied:

(iii) Q is l.s.c. with convex values;
(iv) the relation R2 is open in the second variable and R

c

2 is convex;
(v) R2 is R1 pseudomonotone with respect to (Q,G).

Then there exists (x̄, ȳ) ∈ Gr(F ) such that

(a) R1(ȳ, u) holds for all u ∈ G(x̄),
(b) R2(x, z) holds for all x ∈ X and z ∈ Q(ȳ).

Proof. Let the set-valued mapping T be defined as in the proof of Therem 5. We
have seen that under the given conditions T ∈ T(X,Y ) and T (X) is compact.
Let S : X ⊸ Y be defined by S(x) = {y ∈ Y : R2(x, z) holds for all z ∈ Q(y)}.
It readily follows that S has closed values (by (ii) and (iv)) and that S is a
KKM mapping with respect to T (by (iv) and (v)).
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By Theorem 4, there exists ȳ ∈ T (X)
∩∩

x∈X S(x). By ȳ ∈ T (X), there
exists x̄ ∈ X such that ȳ ∈ F (x̄) and R1(ȳ, u) holds for all u ∈ G(x̄). By
ȳ ∈

∩
x∈X S(x) for each x ∈ X and z ∈ Q(ȳ), R2(x, z) holds. □

In a relation problem the given relations are frequently expressed by equal-
ities and inequalities of real functions or by inclusions or intersections of set-
valued mappings. In this cases conditions (iii) and (iv) from Theorems 5 and
6 are provided by suitable conditions on the involving mappings. For illustra-
tion, we fix now our attention on the relations that appear in vector equilibrium
problems. To this aim let us consider two convex sets A and B in topologi-
cal vector spaces, a topological vector space V and two set-valued mappings
H : A×B ⊸ V , C : A ⊸ V . Define the following relations on A×B:

(i) R(a, b) holds if and only if H(a, b) ⊆ C(a);
(ii) R′(a, b) holds if and only if H(a, b) ∩ C(a) ̸= ∅.
There is an extended literature regarding sufficient conditions in order that

relations R, R′ (both or one of them) should be KKM, closed or convex. In
the next proposition we review some of them. The proofs are standard and for
this reason we give the proof for the first one, only.

Proposition 7. (i) The relation R is:

(i1) KKM whenever A = B, H is convex in the second variable, Cc is
convex-valued and H(a, a) ⊆ C(a) for all a ∈ A;

(i2) closed if H is l.s.c. and C is closed;
(i3) convex if H is concave and C is convex;
(i4) closed in the second variable if H is l.s.c. in the second variable and C

is a closed-valued mapping;
(i5) open in the second variable if H is a compact-valued mapping, u.s.c.

in the second variable and C is an open-valued mapping.

(ii) The relation R
c

is convex if the set-valued mappings H and C
c

are
convex.

Proof. (i1) Suppose that there exists a finite subset {a1, . . . , an} of A and a
convex combination of them, a =

∑n
i=1 λiai such that R(a, ai) does not hold

for all index i. Then for each i there is vi ∈ H(a, ai) ∩ Cc(a). By the given
hypotheses it follows that

n∑
i=1

λivi ∈
( n∑
i=1

λiH(a, ai)
)
∩ Cc(a) ⊆ H(a, a) ∩ Cc(a); a contradiction.

(i2) Let {(at, bt)} be a net converging to (a, b) such that R(at, bt) holds for all
t. If v ∈ H(a, b), since H is l.s.c. there exist a subnet {(atα , btα)} of {(at, bt)}
and a net {vtα} converging to v, with vtα ∈ H(atα , btα) ⊆ C(atα). Since C is
closed, v ∈ C(a) hence R(a, b) holds.
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(i3) Assume that R(a1, b1) and R(a2, b2) are satisfied. Then for any λ ∈ [0, 1]
we have

H(λa1 + (1− λ)a2, λb1 + (1− λ)b2) ⊆ λH(a1, b1) + (1− λ)H(a2, b2)

⊆ λC(a1) + (1− λ)C(a2)

⊆ C(λa1 + (1− λ)a2).

Hence R(λa1 + (1− λ)a2, λb1 + (1− λ)b2) holds.
(i4) Let a ∈ A and let {bt} be a net converging to a point b such that

R(a, bt) holds for all t. If v is an arbitrary point in H(a, b), since H(a, ·)
is l.s.c., there are a subnet {btα} of {bt} and a net {vtα} converging to v
with vtα ∈ H(a, btα) ⊆ C(a). Since C(a) is a closed set, v ∈ C(a). Thus
H(a, b) ⊆ C(a), hence R(a, b) holds.

(i5) We have to show that for a ∈ A arbitrarily fixed the set M = {b ∈ B :
R(a, b) does not hold} is closed. Let b ∈ M and {bt} be a net in M converging
to b. Then for each t there exists vt ∈ H(a, bt) ∩ Cc(a). Since H(a, ·) is u.s.c.
with compact values, by Proposition 2.1 in [4], there exist v ∈ H(a, b) and a
subnet {vtα} of {vt} converging to v. Since Cc(a) is a closed set, v ∈ Cc(a).
Thus b ∈ M .

(ii) Let (a1, b1), (a2, b2) ∈ A × B such that R
c

(a1, b1) and R
c

(a2, b2) hold.
Then, for i = 1, 2 there is vi ∈ H(ai, bi) ∩ C

c

(ai). For any λ ∈ [0, 1] we have

λv1+(1− λ)v2 ∈
(
λH(a1, b1)+(1− λ)H(a2, b2)

)
∩
(
λC

c

(a1)+(1− λ)C
c

(a2)
)

⊆ H(λa1+(1− λ)a2, λb1+(1− λ)b2) ∩ C
c

(λa1+(1− λ)a2).

Hence R
c

is convex in the first variable. □

Proposition 8. (i) The relation R′ is:

(i1) KKM whenever A = B, H is concave in the second variable and for
each a ∈ A, Cc(a) is a convex cone and H(a, a) ∩ C(a) ̸= ∅;

(i2) closed if H is u.s.c. with compact values and C is closed;
(i3) convex if H and C are convex;
(i4) closed in the second variable if H is a compact-valued mapping, u.s.c.

in the second variable and C is a closed-valued mapping;
(i5) open in the second variable if H is l.s.c. in the second variable and C

is open-valued.

(ii) R′c is convex if H is concave and C
c

is convex.
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