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A NOTE ON THE GENERALIZED BERNSTEIN
POLYNOMIALS

A. Bavap, T. KiM, S. H. LEe AnxD D. V. DoLcy

Abstract. We prove two identities for multivariate Bernstein poly-
nomials on simplex, which are considered on a pointwise. In this
paper, we study good approximations of Bernstein polynomials for
every continuous functions on simplex and the higher dimensional
g-analogues of Bernstein polynomials on simplex.

1. Introduction and motivation

Recently many mathematicians study on the theory of multivariate
Bernstein polynomials on simplex . This theory has many applications
in different areas in mathematics and physics, see [1-17].

Throughout this paper we set I = [0, 1] and k € N. Taking a k-dimensional
simplex Ay :

Ak:{;: (:Ul,...,xk)elk: 1+ ...tz <1}

As well-known, Bernstein polynomials (1) are the most important and
interesting concrete operators on a space of continuous functions(see
[15,16]). The purpose of this paper is to study their generalization to
k-dimensional simplex.

Definition 1. The n-th degree ordinary Bernstein polynomial B, , :
I — R is given by
n v n—uv
1) Bun(w) = (1) a1 =),
v=20,1,...,n. We extend this to
B Ak - R
vn
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by taking ¥ to be a multi-index, V= (v1,...,v;) € NE, defining

|V | =v1+...+v€{0,1,...,n}

and setting

=
@ By, @ = (3) 7 a-17 e
where
-k
— — v — n n!
r=(21,...,x%) € Ap,x = x”,v!:v!---v!and( >:.
( 1 k) k H i 1 k U ?'(n_|5}|)'

For every f defined on Ay, we write

(3) Ba(f] ©)= > f(v/m)By

|v|<n

—
xT

).

Here we have the convergence.

Proposition 1. If f : Ay — R is continuous, then B,(f|.) — f
uniformly on Ay as n — oo.

Proof. The proof of this proposition 1 is quite simple and is based on
the partition property of the B n(?) that
H

B (z)=1.

v,n
¥|<n

This proof is similar to that Theorem 1.1.1 in [15, p.5-8]. Since f is
uniformly continuous on Ay, for given € > 0, there exists § > 0 with

the property that if 7= (T1y...,2L), yz (Y1y- -y yk), and |z; —yi| < 0
for all 4, then |f() — f(z)] < e. We define the distance on Ay by

—
d(?, Y) =max{|z1—vil,...,|zr—yx|}. We suppose that n is sufficiently
large that ﬁ < €. We have

Ba(f17) = FEN S 3 UE) - f@IBy (D) + 3 IE) - f(@) By (@)
d,( ,)<5 d(%,?)zs
where v= (v1,...,v;), a multi-index. The first sum satisfies
- —
If () = f(@)[ By (

=
d(%,?) <5

:‘cl
al

§)<e
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by uniform continuity of f. Now we study the second sum. Let M =
max f. Then

- — — —
S @) - @) By () < 2m )
d(z,?) >6 d(i,x) >6
We see that
B?,n(;) < ne
d(%?)za
— —
Thus [B,(f| z) — f(x)| < e + 2Mne, and we are done. O

The generating functions of the k-dimensional Bernstein polynomials are
as follows:

Proposition 2. For n,v € Z,, we have

=
>t ()Y @)
(4) By (2) 5 = = :

n>|v]|

Proof. Writing

? By = X (%) 2 -2l

n!

n!
n27] n>[7|
(6) _ ) (1| 2 P17
W0 e
n>|v|
=
(7) _ (tx)” (1—| x [)mtm
! m!
L S0
This yields the equality
s =
— " _ (t ;(:)v H-IZ)

n>| 7|
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2. Main results and proofs

This section contains the main results of this paper. The first main
result can be state as follows.

Theorem 1. Forn € N;m € Ny and ve N& such that m < min <| v \,n),
we have the following identity

al(m — | u |)!
dAm — . — — —
o > — By (8B g, (@) =By (7).
<7
[¥|<m
- = .
where ©u<v means that 0 <wu; <wv; foralli=1,--- k.

The formula (9) can be viewed as a pointwise recurrence or orthogo-
nality formula for the Bernstein polynomials in k-dimensional simplex.

Remark 1. For m = 1, we obtain from Theorem 1 the following
recurrence formula

(10) (1= |7 By, [(&)+ > & By 4 (#)=B ()

v,n— v,n

Il
=

|
W<

<]

Proof. We prove this theorem by induction on n and m. For n = 0,1
the statement is trivial. Let n > 2 and let us take m = 1. Then the sum
is given by

alm—|u ), -

: —
Y T BBy, @)
U<y
[@|<m
— — — N
= B3 (#)By, () + B (@)By 5, (%)
u<v
|7 |=1
— — —)U N
= (I=la By, ,(2)+ DR By . (@),
| |=1
u<v
; : - . . . -,
By using the following fact | w | = 1 if and only if one index of u is

1 and all the others are zero, after simple manipulation, we obtain the
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relation

*)
(A-17 DBy,

Then the Theorem 1 is valid for any n and m = 1. Now we suppose the
theorem holds up to n > m > 1. We can write for n + 1 and m = 1 the
following

al(l—|d )
— 1= — —
By ()= Z 1 By (2)B3 3 ,.(7)
w<v
|d|<1
Then we get
— — —
(11) B?,n+1(x)_ Z Bﬂ,l(w)Bﬁ—Z,n(x)’
U4<v
RS

— —
- — wlim—|u'|)! -
B?m_’_l(l‘) - Bﬂal(x) Z m! B;’,m(x)B?—a—J,n—m
< w<T-T
| <1 ‘“3,‘57"
Wim—|d .
= m! Bl_;vl(x)BZ/ m(x)Bgfﬂ}f:’,nfm(x
Trw<?
17 1<1, ol [ <m
ﬁ
Setting w=1u + u’ . From the relation (2), we deduce the identity
= wl(im+1—|wl)! - N
v,n—l—l(x) - Z (m + 1)! w,m—l—l(x)Bﬁ—ﬁ,n—m(x)
<o
@] <mt1
This completes the proof of the theorem. O

For every j,m,1 < j < k,m > 1, we define the affine transformations
Tjm by

— —
(12) Tj],m(x) - (xla"' axjflam_| x |,1Ej+1,"‘ axk)'

and for every o € S; permutation of the set {1,---,k} we put
%
(13) o(2) = (o), 5 (To())-
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We state now the second main result of this paper.

Theorem 2. Forn € N and ve N& . we have the following identities

(14) By (Tia(¥)) = B, o (@),
and
(15) B, (0(2)) = B, 4, (7).

The relation (14) is a multivariate symmetry formula for the Bern-
stein polynomilas.

Remark 2. Taking j = 1 and o = (12) we get, from the Theorem 2,
the symmetries relations

— —
(16) By (A=l ]oa s 2e) = B 0, 0T
and
—
(17> B;)7n(x27x17 .’IJ3, e 7xk) = B(U27U1,x3,-~~,vk),n(aj)'
Proof. By using the equalities (2) and (12) we have
— —
B?,n(ijl(‘r)) = B?,n(‘xh ity L= [ @ @, ak)
= (B)ar e 01 Dl

_ (n vj-1, n—|v] =1\
= (B)at ey e - F
This implies, by using the relation (12), the identity
— -
B3 (T5a(7)) = Bp, ) (7)-

The equality (15) of the Theorem 2 can be obtained in a similar way of
(14). O

3. g¢-extension of Bernstein polynomials on simplex

When one talks of g-extension, ¢ is variously considered as an inde-
terminate, a complex number ¢ € C, or p-adic number q € C,. If ¢ € C,
then we always assume that |¢| < 1. If ¢ € C,, we usually assume that
|1 — q|p, < 1. Here, the symbol | - |, stands for the p-adic absolute value
on C, with |p|, < 1/p. For each z, the g-basic numbers are defined by

1—4¢"

[z]q = 1—q°
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We extend this by

N
[2]g = ([z1]g, - - -+ [mklg)
and the g-extension of Bernstein polynomials on A}, is defined by

(18) Byl = (3)E - 17

Here again we have the g-extensions of Theorem 1 and Theorem 2.

Theorem 3. Forn € N,m € Ny and ve ng such that m < min <| v |,n)
Then we have the following identity

wl(m — | u |)!
\m — . — — -
> ———>B;, @B, ;. (o) =B (7]g),

’ITL' u,m —u,n—m
— _—
u<wv
|| <m
— = .
where ©u<v means that 0 <wu; <wv; foralli=1,--- ,k.

Theorem 4. Forn € N and ve ng, we have the following identities

— —
(19) By (Tn()a) = By, 2. (% la).
and

— —
(20) B, (0(Dla) =B, (7 )

The proofs of these theorems are quite similar to those of Theorems
1 and 2. Then we omit them.
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