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ON BRAID-PLAT RELATIONS IN CONWAY

FUNCTION

Ki-Heon Yun

Abstract. There are two kinds of closing method for a given braid

β ∈ B2n, a braid closure β̂ and a plat closure β̄. In the article, we
find a relation between the Conway potential function ∇β̂ of braid

closure β̂ and ∇β̄ of plat closure β̄.

1. Introduction

In [FS98] Fintushel and Stern found a relation between the Conway
potential function of a link L ⊂ S3 and Seiberg-Witten invariants of
a Fintushel-Stern knot surgery 4-manifold. By using this method, we
experienced a big progress in the topology of smooth 4-manifolds. One of
major progresses is the construction of exotic smooth structures on lots
of smooth 4-manifolds. It was achieved by computing Seiberg-Witten
invariants. If we restrict our attention to Fintushel-Stern knot surgery 4-
manifolds, then Seiberg-Witten invariants computation is closely related
to multi-variable Alexander polynomial of the corresponding knot and
link. Therefore lots of examples in 4-manifolds were influenced by some
knowledge of knot theory.

One of long standing problems in the Conway potential function is the
characterization problem: for a given multi-variable symmetric Laurent
polynomial f , can we find a link L ⊂ S3 such that ∇L = f? For any
given symmetric Laurent polynomial f(t) with f(1) = 1, there is a knot
K ⊂ S3 which has ∇K(t)

.
= f(t). But the problem is not solved yet for

multi-variable Laurent polynomial f . Torres conditions [Tor53] are well
known necessary conditions to the problem. But the Torres conditions
are not sufficient [Hil81] [Kid78]. So we want to find more restrictions on
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symmetric multi-variable Laurent polynomial which has to be satisfied
as a multi-variable Conway potential function of a link.

Any knot or link has two kinds well known representatives: a closed
braid and a plat. In [BK88] Birman and Kanenobu found a braid plat
formula of Jones polynomial. Therefore it is natural to ask a relation
between the Conway potential functions ∇β̂ and ∇β̄ where β̂ is the braid

closure and β̄ is the plat closure of a fixed admissible braid β ∈ B2n.

If we view the problem from the Seiberg-Witten invariants of a Fintushel-
Stern knot/link surgery 4-manifold, then the skein relation is related to
±0/1 log transforms on rim torus and the product formula of Seiberg-
Witten invariants along T 3 boundary [MMS97] [FS98].

The sewn-up link exteriors studied by Hoste [Hos84] suggests a new

link β̃ which contains β̂ as a sublink and β̃ can be related to β̄ by skein
relations.

∇β̃
Skein relation Torres condition

∇β̄
? ∇β̂

In this article, referring to the notations appeared in Definition 3.8
in Section 3, we get a relation between multi-variable Conway potential
functions of these three knots or links which is the following

Theorem 1.1. Let β ∈ B2n be a braid whose plat closure β̄ is an
admissible plat. Then we get

πβ̄(
2n∏
i=1

(ti − t−1
i ))∇β(tc1 , tc2 , · · · , tcr̄)(1.1)

= (−1)nπβ̄(∇
β̃
(πβ̂({t1, t2, · · · , t2n}), t1, t3, · · · , t2n−1))

and

∇
β̃
(ts1 , ts2 , · · · , tsr , 1, 1, · · · , 1︸ ︷︷ ︸

n

)(1.2)

= πβ̂(

n∏
i=1

(t2i−1t
−1
2i − t−1

2i−1t2i))∇β̂(ts1 , ts2 , · · · , tsr).
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2. Preliminaries

A multi-variable Conway potential function is defined axiomatically
by Turaev [Tur86] and Murakami [Mur93].

Definition 2.1. [Tur01] A multi-variable Conway potential function
associates to any ordered oriented link L = K1∪K2∪· · ·∪Kn a rational
function in n variables t1, t2, · · · , tn,

∇L(t1, t2, · · · tn) ∈ Q(t1, t2, · · · , tn),

so that the following four axioms are satisfied:

1. ∇L(t1, t2, · · · , tn) is an invariant under ambient isotopies of L
2. The function ∇L(t, t, · · · , t) is the one variable Conway function.

In particular, it does not depend on the numbering of the compo-
nents of L.

3. If n ≥ 2, then ∇L(t1, t2, · · · , tn) ∈ Z[t±1
1 , t±1

2 , · · · , t±1
n ].

4. If the link L′ is obtained from L by replacing the ith component
Ki by its (2, 1)-cable, then

∇L′(t1, t2, · · · , tn) = (T + T−1)∇L(t1, · · · , ti−1, t
2
i , ti+1, · · · , tn),

where T = ti
∏
j 6=i t

lk(Ki,Kj)
j .

In the section we give a skein relation which relates the Conway po-
tential functions ∇β̃ and ∇β̄. Morton [Mor83] studied a ring on a band

relation and we generalize it to the multi-variable case.
Proposition 2.2. [Mur93] Let L1 and L2 be two links which are

different only in a part as in Figure 1. If we identify the variable td of the
circle on a knot component with the variable tc of the knot component.
Then we get

(tc − t−1
c )∇L1 = ∇L2 .

Proof. It comes directly from the first axiom of the Conway potential
function which is given by J. Murakami [Mur93].

Proposition 2.3. Let L3, L4 and L5 be links as in Figure 1. Then

(tc − t−1
c )∇L4 = ∇L3 −∇L5 .

Proof. Consider L3 = L+, L4 = L0 and L5 = L−. Then we get
the result by the Skein relation of a multi-variable Conway potential
function.

Proposition 2.4. Let L3, L4 and L6 be links as in Figure 1 and we
identify tc and td. Then

∇L3 = (tc − t−1
c )∇L4 − (tc − t−1

c )∇L6 .
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Figure 1

Proof. If we apply Proposition 2.2 with an identification tc = td, then

∇L5 = −(tc − t−1
c )∇L6

and we get from Proposition 2.3

∇L3 = (tc − t−1
c )∇L4 − (tc − t−1

c )∇L6 .

Theorem 2.5. If we identify the variable td with the variable tc in
Figure 1, then we get

(tc − t−1
c )2∇L7 = −∇L3 .

Proof. Let us put tc = td and consider L6 = L+, L7 = L0 and
L4 = L−, then we have

(tc − t−1
c )2∇L7 = (tc − t−1

c ){∇L6 −∇L4}
= −(tc − t−1

c ){∇L4 −∇L6} = −∇L3

from Proposition 2.4.

3. Braid closure and plat closure

In this section, we study a relation between ∇β̄ and ∇β̂ for a given

braid β ∈ B2n.
Let us consider the braid permutation ρ : Bn → Sn defined by ρ(σi) =

(i i+ 1) for the standard Artin braid σi and ρ(σiσj) = ρ(σj) ◦ ρ(σi).

Definition 3.1. 1. A pure braid is a braid β ∈ Bn with braid
permutation ρ(β) = idn ∈ Sn. The group of pure braid of n-
strands is denoted by PBn.
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2. Let β ∈ Bn for some positive integer n. A braid-plat of type
Lβ(2k, n−2k) is the link obtained from β by closing first 2k strands
as a plat and the remaining n− 2k strands as a closed braid.

3. An admissible braid-plat is an oriented braid-plat Lβ(2k, n − 2k)
such that strands 1, 3, · · · , 2k−1 are oriented upward and strands
2, 4, · · · , 2k are oriented downward at the top and at the bottom.

4. A preferred plat is an admissible braid-plat Lβ(2n, 0) with a re-
striction such that ρ(β)(2i) = 2i for i = 1, 2, · · · , n and there is a
sequence of integers 0 = n0 < n1 < · · · < nr = n such that the
plat closing of the strands {2ni−1 +1, 2ni−1 +2, · · · , 2ni} gives the
link component Li of β̄ = L1 ∪ L2 ∪ · · · ∪ Lr for each i = 1, · · · , r.

Remark 3.2. [Bir74] [BK88]

1. A plat β̄ of β ∈ B2n is a braid-plat of type Lβ(2n, 0) and a closed

braid β̂ of β ∈ Bn is a braid-plat of type Lβ(0, n).
2. Any braid β ∈ Bn may be altered to α ∈ Bn, with Lα(2k, n −

2k) = Lβ(2k, n− 2k) as a link and Lα(2k, n− 2k) is an admissible
braid-plat by adding appropriate half-twists at the top and at the
bottom.

3. Any admissible braid-plat of type Lβ(2n, 0) may be altered to
a preferred plat by adding appropriate (σ2iσ2i−1σ2i+1σ2i)

±1 or
(σ−1

2i σ
−1
2i−1σ2i+1σ2i)

±1 at the top.
4. Since any link is represented as 2n-plat for some n, it may be

considered as an admissible braid-plat or a preferred plat. But it
may not be possible to represent a knot/link as a plat of a pure
braid.

Let β ∈ PB2n and let β̄ be the plat of β with orientation defined by
oriented upward at each odd-th strand and oriented downward at each
even-th strand. Then β̄ is a link with n -components. Let β̂ be the
oriented 2n-components braid closure of β which is obtained by closing
the i-th strand at the bottom and the i-th strand at the top. It has an
orientation defined by each odd-th strand is oriented upward and each
even-th strand is oriented downward.

Let β̃ be the 3n-components link as in Figure 2 with ordering such
that ti, 1 ≤ i ≤ 2n, is the color of the link component coming from
the i-th strand and t2n+i, 1 ≤ i ≤ n, is the color of the link component
which binds the (2i− 1)-th strand and (2i)-th strand.

One of well-known constraints in the Conway potential function is
the following Torres conditions.
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Figure 2. (a) β̄ (b) β̂ (c) β̃

Proposition 3.3. [Tor53] Let L = K1 ∪K2 ∪ · · · ∪Kn be an n com-
ponent oriented link and ti be the color corresponding to the preferred
meridian of link component Ki.

1. Let L′ = K2∪K3∪· · ·∪Kn be a sublink of L obtained by dropping
the link component K1, then we get

∇L(1, t2, t3, · · · , tn) = (

n∏
i=2

t
lk(K1,Ki)
i −

n∏
i=2

t
−lk(K1,Ki)
i )∇L′(t2, t3, · · · , tn)

2. ∇L(1, · · · , 1, ti, 1, · · · , 1) = ∇Ki(ti)
∏n
k=1,k 6=i(t

lk(Ki,Kk)
i −t−lk(Ki,Kk)

i )

Proposition 3.4. For a pure braid β ∈ PB2n with orientation as
in Figure 2, we get the following relations:

πβ̄(
2n∏
i=1

(ti − t−1
i ))∇β̄(t1, t3, · · · , t2n−1)(3.1)

= (−1)n∇β̃(t1, t1, t3, t3, · · · , t2n−1, t2n−1, t1, t3, · · · , t2n−1)

and

∇β̃(t1, t2, · · · , t2n, 1, · · · , 1︸ ︷︷ ︸
n

)(3.2)

= (

n∏
i=1

(t2i−1t
−1
2i − t−1

2i−1t2i))∇β̂(t1, t2, · · · , t2n)

where πβ̄ : {1, 2, · · · , 2n} → {1, 3, · · · , 2n − 1} is a map defined by

πβ̄(2i− 1) = 2i− 1 and πβ̄(2i) = 2i− 1.
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Proof. Equation (3.1) is an application of Theorem 2.5 because

πβ̄(

2n∏
i=1

(ti − t−1
i ))∇β̄(t1, t3, · · · , t2n−1)

= (

n∏
i=1

(t2i−1 − t−1
2i−1)2)∇β̄(t1, t3, · · · , t2n−1)

= (−1)n∇β̃(t1, t1, t3, t3, · · · , t2n−1, t2n−1, t1, t3, · · · , t2n−1).

Equation (3.2) is an application of Torres conditions: Observe that
for 1 ≤ j ≤ 2n and 1 ≤ i ≤ n,

lk(Kj ,K2n+i) =

 1 , if j = 2i− 1
−1 , if j = 2i
0 , otherwise

and β̂ is a sublink of β̃.

Let us consider a preferred plat case from now on.
Proposition 3.5. Let β ∈ B2n be a braid whose plat closure β̄ is a

knot and a preferred plat. Then we get

(t− t−1)2n∇β̄(t) = (−1)n∇β̃(t, t, · · · , t︸ ︷︷ ︸
n+1

, t, · · · , t︸ ︷︷ ︸
n

)

and

∇β̃(t1, t2, t4 · · · , t2n, 1, 1, · · · , 1︸ ︷︷ ︸
n

)

= (

n∏
i=1

(t1t
−1
2i − t−1

1 t2i))∇β̂(t1, t2, t4 · · · , t2n).

Proof. If we close β as a closed braid, the number of link components
is reduced to the corresponding ρ(β), so we need a projection map

πβ̂ : {1, 2, 3, 4, · · · , 2n} → {1, 2, 4, · · · , 2n}
such that

πβ̂(i) =

{
1, if i = 1, 3, · · · , 2n− 1

i, if i = 2, 4, · · · , 2n.
Hence we need to apply πβ̂ on both sides of (3.1) and (3.2) of Proposi-

tion 3.4, which gives the desired result.

Note that, for a given any knot K, we can always find a braid β ∈ B2n

for some positive integer n such that K = β̄ and β̄ is a preferred plat.



414 Ki-Heon Yun

.....

.....

.....

.....

.....

β

Figure 3

Proposition 3.6. Suppose that a braid β ∈ B2n has a plat closure
β̄ which is a preferred plat and a knot. Then the braid closure β̂ of β
has (2n+ 1) components as follows:

β̃ = K1 ∪K2 ∪K4 ∪ · · · ∪K2n ∪K2n+1 ∪ · · · ∪K3n.

Furthermore, if ti is a color of the i-th strand, then we also get

∇β̃(1, t2, t4, · · · , t2n, t2n+1, · · · , t3n)

= (−1)n(

n∏
i=1

(t2i − t−1
2i ))((

n∏
i=1

t
lk(K1,K2i)
2i )(

n∏
j=1

t2n+j)

−(

n∏
i=1

t
−lk(K1,K2i)
2i )(

n∏
j=1

t−1
2n+j))∇K2∪K4∪···∪K2n

(t2, t4, · · · , t2n)

and

∇β̃(t1, 1, · · · , 1︸ ︷︷ ︸
n

, t1, · · · , t1)

= (
n∏
i=1

(t
lk(K1,K2i)
1 t−1

2n+i − t
−lk(K1,K2i)
1 t2n+i))(t1 − t−1

1 )n∇K1(t1).

Proof. By Torres conditions, we get

∇β̃(1, t2, t4, · · · , t2n, t2n+1, · · · , t3n)

= ((

n∏
i=1

t
lk(K1,K2i)
2i )(

n∏
j=1

t2n+j)− (

n∏
i=1

t
−lk(K1,K2i)
2i )(

n∏
j=1

t−1
2n+j))

×∇K2∪K4∪···∪K2n∪K2n+1∪···∪K3n(t2, t4, · · · , t2n, t2n+1, · · · , t3n)
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and, by Proposition 2.2, we also have

∇K2∪K4∪···∪K2n∪K2n+1∪···∪K3n(t2, t4, · · · , t2n, t2n+1, · · · , t3n)

= (−1)n(
n∏
i=1

(t2i − t−1
2i ))∇K2∪K4∪···∪K2n(t2, t4, · · · , t2n).

One can prove the second equation in a similar way.

Now we will consider a general preferred plat case. Let β ∈ B2n be
a braid whose plat closure β̄ = K1 ∪K2 ∪ · · · ∪Km is an m-component
link and a preferred plat. Then ρ(β) =

∏m
i=1(

∏ri
j=1 ρij) is a product of

disjoint cycles in S2n where

ρij ∈ S{2ni−1+1,2ni−1+2,··· ,2ni}.

Let sij be the smallest element of ρij with an order relation defined by

sij < si′j′ if i < i′ or (i = i′ and j < j′).

Let

πβ̂ : {1, 2, · · · , 2n} → {s11, s12, · · · , s1r1 , · · · , sm1, · · · , smrm}
be a map which is defined

πβ̂ |{2ni−1+1,2ni−1+2,··· ,2ni} : {2ni−1+1, 2ni−1+2, · · · , 2ni} → {si1, si2, · · · , siri}
as in Proposition 3.5 above. Then we get

Theorem 3.7.

(
n−1∏
i=0

(t2ni+1 − t−1
2ni+1)2(ni+1−ni))∇β(t1, tn1+1, · · · , tnm−1+1)

= (−1)n∇β̃(t1, · · · , t1︸ ︷︷ ︸
n1+1

, · · · , tnm−1+1, · · · , tnm−1+1︸ ︷︷ ︸
(nm−nm−1)+1

,

t1, · · · , t1︸ ︷︷ ︸
n1

, · · · , tnm−1+1, · · · , tnm−1+1︸ ︷︷ ︸
nm−nm−1

)

and

∇β̃(πβ̂({t1, t2, · · · , t2n}), 1, 1, · · · , 1︸ ︷︷ ︸
n

)

= πβ̂(

n∏
i=1

(t2i−1t
−1
2i − t−1

2i−1t2i))∇β̂(ts11 , · · · , ts1r1 , · · · , tsm1 , · · · , tsmrm ).

Proof. It is the most general preferred plat case and we can get it by
applying Proposition 3.5 and Proposition 3.6 inductively.
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Now we will consider an admissible plat case.
Definition 3.8. Let us define the following two maps:

(i)

πβ̄ : {1, 2, · · · , 2n} → {1, 3, 5, · · · , 2n− 1} → {1, 3, 5, · · · , 2n− 1}/ ∼
where (2i− 1) ∼ (2j − 1) if there is a closing such that

{ Top color, Bottom color} = {2i− 1, 2j − 1}.
Let r̄ = |{1, 3, 5, · · · , 2n− 1}/ ∼ | and let

{c1, c2, · · · , cr̄} = {1, 3, 5, · · · , 2n− 1}/ ∼
with ci < cj if i < j.

(ii) Let ρ(β) = ρ1ρ2 · · · ρr ∈ S2n be a product of disjoint cycles in S2n

and si be the smallest element of ρi. Then we will define

πβ̂ : {1, 2, 3, · · · , 2n} → {s1, s2, · · · , sr}

such that πβ̂(i) = sj if i is in the cycle of sj .

By using notations above, we will get the following relations.
Theorem 3.9. Let β ∈ B2n be a braid whose plat closure β is an

admissible plat with color restriction. Then

πβ̄(
2n∏
i=1

(ti − t−1
i ))∇β(tc1 , tc2 , · · · , tcr̄)(3.3)

= (−1)nπβ̄(∇β̃(πβ̂({t1, t2, · · · , t2n}), t1, t3, · · · , t2n−1))

and

∇β̃(ts1 , ts2 , · · · , tsr , 1, 1, · · · , 1︸ ︷︷ ︸
n

)(3.4)

= πβ̂(

n∏
i=1

(t2i−1t
−1
2i − t−1

2i−1t2i))∇β̂(ts1 , ts2 , · · · , tsr).

Proof. Equation (3.3) is a result of Skein relation and Equation (3.4)
is a result of Torres conditions of a multi-variable Conway polynomial.

Remark 3.10. Note that, under the same condition as in Theo-
rem 3.9 above, the Conway potential function of β̃ is given by

∇β̃(πβ̂({t1, t−1
2 , · · · , t2n−1, t

−1
2n }), t2n+1, · · · , t3n)

.
= πβ̂(

det(I − B̄β′ (t
2
1, t

2
2, · · · , t

2
3n))

1− t21t22 · · · t23n
)
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where

β′ = β(

n∏
i=1

(

2n−(2i+1)∏
j=0

σ2n−j))(σ2iσ
2
2i−1σ2i)(

n∏
i=1

(

2n−(2i+1)∏
j=0

σ2n−j))
−1.

The reason is following: The link β̃ can be considered as in Figure 3.
Let β̂′ be the same as β̃ as an unoriented link but all strands are oriented
upward. Then we can compute the (non-normalized) Conway potential
function by using a Morton’s result in [Mor98]. Now, by the orientation
change formula for Conway function, we get ∇β̃ as above.
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