Honam Mathematical J. **33** (2011), No. 3, pp. 407–418 http://dx.doi.org/10.5831/HMJ.2011.33.3.407

ON BRAID-PLAT RELATIONS IN CONWAY FUNCTION

KI-HEON YUN

Abstract. There are two kinds of closing method for a given braid $\beta \in B_{2n}$, a braid closure $\hat{\beta}$ and a plat closure $\bar{\beta}$. In the article, we find a relation between the Conway potential function $\nabla_{\hat{\beta}}$ of braid closure $\hat{\beta}$ and $\nabla_{\bar{\beta}}$ of plat closure $\bar{\beta}$.

1. Introduction

In [FS98] Fintushel and Stern found a relation between the Conway potential function of a link $L \subset S^3$ and Seiberg-Witten invariants of a Fintushel-Stern knot surgery 4-manifold. By using this method, we experienced a big progress in the topology of smooth 4-manifolds. One of major progresses is the construction of exotic smooth structures on lots of smooth 4-manifolds. It was achieved by computing Seiberg-Witten invariants. If we restrict our attention to Fintushel-Stern knot surgery 4manifolds, then Seiberg-Witten invariants computation is closely related to multi-variable Alexander polynomial of the corresponding knot and link. Therefore lots of examples in 4-manifolds were influenced by some knowledge of knot theory.

One of long standing problems in the Conway potential function is the characterization problem: for a given multi-variable symmetric Laurent polynomial f, can we find a link $L \subset S^3$ such that $\nabla_L = f$? For any given symmetric Laurent polynomial f(t) with f(1) = 1, there is a knot $K \subset S^3$ which has $\nabla_K(t) \doteq f(t)$. But the problem is not solved yet for multi-variable Laurent polynomial f. Torres conditions [Tor53] are well known necessary conditions to the problem. But the Torres conditions are not sufficient [Hil81] [Kid78]. So we want to find more restrictions on

Received August 2, 2011. Accepted August 21, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 57M25, 57M27.

Key words and phrases. Conway potential function, braid, plat.

symmetric multi-variable Laurent polynomial which has to be satisfied as a multi-variable Conway potential function of a link.

Any knot or link has two kinds well known representatives: a closed braid and a plat. In [BK88] Birman and Kanenobu found a braid plat formula of Jones polynomial. Therefore it is natural to ask a relation between the Conway potential functions $\nabla_{\hat{\beta}}$ and $\nabla_{\bar{\beta}}$ where $\hat{\beta}$ is the braid closure and $\bar{\beta}$ is the plat closure of a fixed admissible braid $\beta \in B_{2n}$.

If we view the problem from the Seiberg-Witten invariants of a Fintushel-Stern knot/link surgery 4-manifold, then the skein relation is related to $\pm 0/1$ log transforms on rim torus and the product formula of Seiberg-Witten invariants along T^3 boundary [MMS97] [FS98].

The sewn-up link exteriors studied by Hoste [Hos84] suggests a new link $\tilde{\beta}$ which contains $\hat{\beta}$ as a sublink and $\tilde{\beta}$ can be related to $\bar{\beta}$ by skein relations.

In this article, referring to the notations appeared in Definition 3.8 in Section 3, we get a relation between multi-variable Conway potential functions of these three knots or links which is the following

Theorem 1.1. Let $\beta \in B_{2n}$ be a braid whose plat closure $\overline{\beta}$ is an admissible plat. Then we get

(1.1)
$$\pi_{\bar{\beta}}(\prod_{i=1}^{2n} (t_i - t_i^{-1})) \nabla_{\overline{\beta}}(t_{c_1}, t_{c_2}, \cdots, t_{c_{\bar{r}}})$$
$$= (-1)^n \pi_{\bar{\beta}}(\nabla_{\widetilde{\beta}}(\pi_{\hat{\beta}}(\{t_1, t_2, \cdots, t_{2n}\}), t_1, t_3, \cdots, t_{2n-1}))$$

and

(1.2)
$$\nabla_{\widetilde{\beta}}(t_{s_1}, t_{s_2}, \cdots, t_{s_r}, \underbrace{1, 1, \cdots, 1}_{n}) = \pi_{\widehat{\beta}}(\prod_{i=1}^{n} (t_{2i-1}t_{2i}^{-1} - t_{2i-1}^{-1}t_{2i})) \nabla_{\widehat{\beta}}(t_{s_1}, t_{s_2}, \cdots, t_{s_r}).$$

2. Preliminaries

A multi-variable Conway potential function is defined axiomatically by Turaev [Tur86] and Murakami [Mur93].

Definition 2.1. [Tur01] A multi-variable Conway potential function associates to any ordered oriented link $L = K_1 \cup K_2 \cup \cdots \cup K_n$ a rational function in *n* variables t_1, t_2, \cdots, t_n ,

$$\nabla_L(t_1, t_2, \cdots t_n) \in \mathbb{Q}(t_1, t_2, \cdots, t_n),$$

so that the following four axioms are satisfied:

- 1. $\nabla_L(t_1, t_2, \cdots, t_n)$ is an invariant under ambient isotopies of L
- 2. The function $\nabla_L(t, t, \dots, t)$ is the one variable Conway function. In particular, it does not depend on the numbering of the components of L.
- 3. If $n \ge 2$, then $\nabla_L(t_1, t_2, \cdots, t_n) \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \cdots, t_n^{\pm 1}].$ 4. If the link L' is obtained from L by replacing the i^{th} component K_i by its (2, 1)-cable, then

$$\nabla_{L'}(t_1, t_2, \cdots, t_n) = (T + T^{-1}) \nabla_L(t_1, \cdots, t_{i-1}, t_i^2, t_{i+1}, \cdots, t_n),$$

where $T = t_i \prod_{j \neq i} t_j^{lk(K_i, K_j)}$.

In the section we give a skein relation which relates the Conway potential functions $\nabla_{\tilde{\beta}}$ and $\nabla_{\bar{\beta}}$. Morton [Mor83] studied a ring on a band relation and we generalize it to the multi-variable case.

Proposition 2.2. [Mur93] Let L_1 and L_2 be two links which are different only in a part as in Figure 1. If we identify the variable t_d of the circle on a knot component with the variable t_c of the knot component. Then we get

$$(t_c - t_c^{-1})\nabla_{L_1} = \nabla_{L_2}.$$

Proof. It comes directly from the first axiom of the Conway potential function which is given by J. Murakami [Mur93].

Proposition 2.3. Let L_3 , L_4 and L_5 be links as in Figure 1. Then

$$(t_c - t_c^{-1})\nabla_{L_4} = \nabla_{L_3} - \nabla_{L_5}.$$

Proof. Consider $L_3 = L_+$, $L_4 = L_0$ and $L_5 = L_-$. Then we get the result by the Skein relation of a multi-variable Conway potential function.

Proposition 2.4. Let L_3 , L_4 and L_6 be links as in Figure 1 and we identify t_c and t_d . Then

$$\nabla_{L_3} = (t_c - t_c^{-1}) \nabla_{L_4} - (t_c - t_c^{-1}) \nabla_{L_6}.$$

FIGURE 1

Proof. If we apply Proposition 2.2 with an identification $t_c = t_d$, then

$$\nabla_{L_5} = -(t_c - t_c^{-1}) \nabla_{L_6}$$

and we get from Proposition 2.3

$$\nabla_{L_3} = (t_c - t_c^{-1})\nabla_{L_4} - (t_c - t_c^{-1})\nabla_{L_6}.$$

Theorem 2.5. If we identify the variable t_d with the variable t_c in Figure 1, then we get

$$(t_c - t_c^{-1})^2 \nabla_{L_7} = -\nabla_{L_3}$$

Proof. Let us put $t_c = t_d$ and consider $L_6 = L_+$, $L_7 = L_0$ and $L_4 = L_-$, then we have

$$(t_c - t_c^{-1})^2 \nabla_{L_7} = (t_c - t_c^{-1}) \{ \nabla_{L_6} - \nabla_{L_4} \}$$

= $-(t_c - t_c^{-1}) \{ \nabla_{L_4} - \nabla_{L_6} \} = -\nabla_{L_3}$

from Proposition 2.4.

3. Braid closure and plat closure

In this section, we study a relation between $\nabla_{\bar{\beta}}$ and $\nabla_{\hat{\beta}}$ for a given braid $\beta \in B_{2n}$.

Let us consider the braid permutation $\rho: B_n \to S_n$ defined by $\rho(\sigma_i) = (i \ i + 1)$ for the standard Artin braid σ_i and $\rho(\sigma_i \sigma_j) = \rho(\sigma_j) \circ \rho(\sigma_i)$.

Definition 3.1. 1. A pure braid is a braid $\beta \in B_n$ with braid permutation $\rho(\beta) = id_n \in S_n$. The group of pure braid of *n*-strands is denoted by PB_n .

- 2. Let $\beta \in B_n$ for some positive integer n. A braid-plat of type $L_{\beta}(2k, n-2k)$ is the link obtained from β by closing first 2k strands as a plat and the remaining n 2k strands as a closed braid.
- 3. An admissible braid-plat is an oriented braid-plat $L_{\beta}(2k, n-2k)$ such that strands 1, 3, \cdots , 2k-1 are oriented upward and strands 2, 4, \cdots , 2k are oriented downward at the top and at the bottom.
- 4. A preferred plat is an admissible braid-plat $L_{\beta}(2n,0)$ with a restriction such that $\rho(\beta)(2i) = 2i$ for $i = 1, 2, \dots, n$ and there is a sequence of integers $0 = n_0 < n_1 < \dots < n_r = n$ such that the plat closing of the strands $\{2n_{i-1}+1, 2n_{i-1}+2, \dots, 2n_i\}$ gives the link component L_i of $\bar{\beta} = L_1 \cup L_2 \cup \dots \cup L_r$ for each $i = 1, \dots, r$.

Remark 3.2. [Bir74] [BK88]

- 1. A plat $\bar{\beta}$ of $\beta \in B_{2n}$ is a braid-plat of type $L_{\beta}(2n,0)$ and a closed braid $\hat{\beta}$ of $\beta \in B_n$ is a braid-plat of type $L_{\beta}(0,n)$.
- 2. Any braid $\beta \in B_n$ may be altered to $\alpha \in B_n$, with $L_{\alpha}(2k, n 2k) = L_{\beta}(2k, n 2k)$ as a link and $L_{\alpha}(2k, n 2k)$ is an admissible braid-plat by adding appropriate half-twists at the top and at the bottom.
- 3. Any admissible braid-plat of type $L_{\beta}(2n,0)$ may be altered to a preferred plat by adding appropriate $(\sigma_{2i}\sigma_{2i-1}\sigma_{2i+1}\sigma_{2i})^{\pm 1}$ or $(\sigma_{2i}^{-1}\sigma_{2i-1}^{-1}\sigma_{2i+1}\sigma_{2i})^{\pm 1}$ at the top.
- 4. Since any link is represented as 2*n*-plat for some *n*, it may be considered as an admissible braid-plat or a preferred plat. But it may not be possible to represent a knot/link as a plat of a pure braid.

Let $\beta \in PB_{2n}$ and let $\overline{\beta}$ be the plat of β with orientation defined by oriented upward at each odd-th strand and oriented downward at each even-th strand. Then $\overline{\beta}$ is a link with n -components. Let $\hat{\beta}$ be the oriented 2n-components braid closure of β which is obtained by closing the *i*-th strand at the bottom and the *i*-th strand at the top. It has an orientation defined by each odd-th strand is oriented upward and each even-th strand is oriented downward.

Let β be the 3*n*-components link as in Figure 2 with ordering such that t_i , $1 \leq i \leq 2n$, is the color of the link component coming from the *i*-th strand and t_{2n+i} , $1 \leq i \leq n$, is the color of the link component which binds the (2i - 1)-th strand and (2i)-th strand.

One of well-known constraints in the Conway potential function is the following Torres conditions.

FIGURE 2. (a) $\overline{\beta}$ (b) $\hat{\beta}$ (c) $\tilde{\beta}$

Proposition 3.3. [Tor53] Let $L = K_1 \cup K_2 \cup \cdots \cup K_n$ be an *n* component oriented link and t_i be the color corresponding to the preferred meridian of link component K_i .

1. Let $L' = K_2 \cup K_3 \cup \cdots \cup K_n$ be a sublink of L obtained by dropping the link component K_1 , then we get

$$\nabla_L(1, t_2, t_3, \cdots, t_n) = (\prod_{i=2}^n t_i^{lk(K_1, K_i)} - \prod_{i=2}^n t_i^{-lk(K_1, K_i)}) \nabla_{L'}(t_2, t_3, \cdots, t_n)$$

2. $\nabla_L(1, \cdots, 1, t_i, 1, \cdots, 1) = \nabla_{K_i}(t_i) \prod_{k=1, k \neq i}^n (t_i^{lk(K_i, K_k)} - t_i^{-lk(K_i, K_k)})$

Proposition 3.4. For a pure braid $\beta \in PB_{2n}$ with orientation as in Figure 2, we get the following relations:

(3.1)
$$\pi_{\bar{\beta}}(\prod_{i=1}^{2n} (t_i - t_i^{-1})) \nabla_{\bar{\beta}}(t_1, t_3, \cdots, t_{2n-1})$$

= $(-1)^n \nabla_{\tilde{\beta}}(t_1, t_1, t_3, t_3, \cdots, t_{2n-1}, t_{2n-1}, t_1, t_3, \cdots, t_{2n-1})$

and

(3.2)
$$\nabla_{\tilde{\beta}}(t_1, t_2, \cdots, t_{2n}, \underbrace{1, \cdots, 1}_{n}) = (\prod_{i=1}^n (t_{2i-1} t_{2i}^{-1} - t_{2i-1}^{-1} t_{2i})) \nabla_{\hat{\beta}}(t_1, t_2, \cdots, t_{2n})$$

where $\pi_{\bar{\beta}} : \{1, 2, \dots, 2n\} \to \{1, 3, \dots, 2n-1\}$ is a map defined by $\pi_{\bar{\beta}}(2i-1) = 2i-1$ and $\pi_{\bar{\beta}}(2i) = 2i-1$.

Proof. Equation (3.1) is an application of Theorem 2.5 because

$$\pi_{\bar{\beta}}(\prod_{i=1}^{2n} (t_i - t_i^{-1})) \nabla_{\bar{\beta}}(t_1, t_3, \cdots, t_{2n-1})$$

= $(\prod_{i=1}^n (t_{2i-1} - t_{2i-1}^{-1})^2) \nabla_{\bar{\beta}}(t_1, t_3, \cdots, t_{2n-1})$
= $(-1)^n \nabla_{\bar{\beta}}(t_1, t_1, t_3, t_3, \cdots, t_{2n-1}, t_{2n-1}, t_1, t_3, \cdots, t_{2n-1}).$

Equation (3.2) is an application of Torres conditions: Observe that for $1 \le j \le 2n$ and $1 \le i \le n$,

$$lk(K_j, K_{2n+i}) = \begin{cases} 1 & \text{, if } j = 2i - 1 \\ -1 & \text{, if } j = 2i \\ 0 & \text{, otherwise} \end{cases}$$

and $\hat{\beta}$ is a sublink of $\tilde{\beta}$.

Let us consider a preferred plat case from now on.

Proposition 3.5. Let $\beta \in B_{2n}$ be a braid whose plat closure $\overline{\beta}$ is a knot and a preferred plat. Then we get

$$(t-t^{-1})^{2n}\nabla_{\bar{\beta}}(t) = (-1)^n \nabla_{\bar{\beta}}(\underbrace{t, t, \cdots, t}_{n+1}, \underbrace{t, \cdots, t}_{n})$$

and

$$\nabla_{\tilde{\beta}}(t_1, t_2, t_4 \cdots, t_{2n}, \underbrace{1, 1, \cdots, 1}_{n}) = (\prod_{i=1}^n (t_1 t_{2i}^{-1} - t_1^{-1} t_{2i})) \nabla_{\hat{\beta}}(t_1, t_2, t_4 \cdots, t_{2n}).$$

Proof. If we close β as a closed braid, the number of link components is reduced to the corresponding $\rho(\beta)$, so we need a projection map

$$\pi_{\hat{\beta}}: \{1, 2, 3, 4, \cdots, 2n\} \rightarrow \{1, 2, 4, \cdots, 2n\}$$

such that

$$\pi_{\hat{\beta}}(i) = \begin{cases} 1, & \text{if } i = 1, 3, \cdots, 2n-1\\ i, & \text{if } i = 2, 4, \cdots, 2n. \end{cases}$$

Hence we need to apply $\pi_{\hat{\beta}}$ on both sides of (3.1) and (3.2) of Proposition 3.4, which gives the desired result.

Note that, for a given any knot K, we can always find a braid $\beta \in B_{2n}$ for some positive integer n such that $K = \overline{\beta}$ and $\overline{\beta}$ is a preferred plat.

413

FIGURE 3

Proposition 3.6. Suppose that a braid $\beta \in B_{2n}$ has a plat closure $\overline{\beta}$ which is a preferred plat and a knot. Then the braid closure $\hat{\beta}$ of β has (2n + 1) components as follows:

$$\tilde{\beta} = K_1 \cup K_2 \cup K_4 \cup \cdots \cup K_{2n} \cup K_{2n+1} \cup \cdots \cup K_{3n}$$

Furthermore, if t_i is a color of the *i*-th strand, then we also get

$$\nabla_{\tilde{\beta}}(1, t_2, t_4, \cdots, t_{2n}, t_{2n+1}, \cdots, t_{3n})$$

$$= (-1)^n (\prod_{i=1}^n (t_{2i} - t_{2i}^{-1})) ((\prod_{i=1}^n t_{2i}^{lk(K_1, K_{2i})}) (\prod_{j=1}^n t_{2n+j}))$$

$$- (\prod_{i=1}^n t_{2i}^{-lk(K_1, K_{2i})}) (\prod_{j=1}^n t_{2n+j}^{-1})) \nabla_{K_2 \cup K_4 \cup \cdots \cup K_{2n}} (t_2, t_4, \cdots, t_{2n})$$

and

$$\nabla_{\tilde{\beta}}(t_1, \underbrace{1, \cdots, 1}_{n}, t_1, \cdots, t_1) = (\prod_{i=1}^{n} (t_1^{lk(K_1, K_{2i})} t_{2n+i}^{-1} - t_1^{-lk(K_1, K_{2i})} t_{2n+i}))(t_1 - t_1^{-1})^n \nabla_{K_1}(t_1).$$

Proof. By Torres conditions, we get

$$\nabla_{\tilde{\beta}}(1, t_2, t_4, \cdots, t_{2n}, t_{2n+1}, \cdots, t_{3n}) = ((\prod_{i=1}^n t_{2i}^{lk(K_1, K_{2i})})((\prod_{j=1}^n t_{2n+j}) - ((\prod_{i=1}^n t_{2i}^{-lk(K_1, K_{2i})}))((\prod_{j=1}^n t_{2n+j}^{-1}))) \times \nabla_{K_2 \cup K_4 \cup \cdots \cup K_{2n} \cup K_{2n+1} \cup \cdots \cup K_{3n}}(t_2, t_4, \cdots, t_{2n}, t_{2n+1}, \cdots, t_{3n}))$$

and, by Proposition 2.2, we also have

$$\nabla_{K_2 \cup K_4 \cup \dots \cup K_{2n} \cup K_{2n+1} \cup \dots \cup K_{3n}} (t_2, t_4, \cdots, t_{2n}, t_{2n+1}, \cdots, t_{3n})$$

= $(-1)^n (\prod_{i=1}^n (t_{2i} - t_{2i}^{-1})) \nabla_{K_2 \cup K_4 \cup \dots \cup K_{2n}} (t_2, t_4, \cdots, t_{2n}).$

One can prove the second equation in a similar way.

Now we will consider a general preferred plat case. Let $\beta \in B_{2n}$ be a braid whose plat closure $\overline{\beta} = K_1 \cup K_2 \cup \cdots \cup K_m$ is an *m*-component link and a preferred plat. Then $\rho(\beta) = \prod_{i=1}^m (\prod_{j=1}^{r_i} \rho_{ij})$ is a product of disjoint cycles in S_{2n} where

$$\rho_{ij} \in S_{\{2n_{i-1}+1, 2n_{i-1}+2, \cdots, 2n_i\}}$$

Let s_{ij} be the smallest element of ρ_{ij} with an order relation defined by

$$s_{ij} < s_{i'j'}$$
 if $i < i'$ or $(i = i' \text{ and } j < j')$.

Let

$$\pi_{\hat{\beta}}: \{1, 2, \cdots, 2n\} \to \{s_{11}, s_{12}, \cdots, s_{1r_1}, \cdots, s_{m1}, \cdots, s_{mr_m}\}$$

be a map which is defined

 $\pi_{\hat{\beta}}|_{\{2n_{i-1}+1,2n_{i-1}+2,\cdots,2n_i\}}:\{2n_{i-1}+1,2n_{i-1}+2,\cdots,2n_i\}\to\{s_{i1},s_{i2},\cdots,s_{ir_i}\}$ as in Proposition 3.5 above. Then we get

Theorem 3.7.

$$(\prod_{i=0}^{n-1} (t_{2n_i+1} - t_{2n_i+1}^{-1})^{2(n_{i+1}-n_i)}) \nabla_{\overline{\beta}}(t_1, t_{n_1+1}, \cdots, t_{n_{m-1}+1}) = (-1)^n \nabla_{\overline{\beta}}(\underbrace{t_1, \cdots, t_1}_{n_1+1}, \cdots, \underbrace{t_{n_{m-1}+1}, \cdots, t_{n_{m-1}+1}}_{(n_m - n_{m-1})+1}, \underbrace{t_1, \cdots, t_1}_{n_1}, \cdots, \underbrace{t_{n_{m-1}+1}, \cdots, t_{n_{m-1}+1}}_{n_m - n_{m-1}})$$

and

$$\nabla_{\tilde{\beta}}(\pi_{\hat{\beta}}(\{t_1, t_2, \cdots, t_{2n}\}), \underbrace{1, 1, \cdots, 1}_{n})$$

= $\pi_{\hat{\beta}}(\prod_{i=1}^{n} (t_{2i-1}t_{2i}^{-1} - t_{2i-1}^{-1}t_{2i})) \nabla_{\hat{\beta}}(t_{s_{11}}, \cdots, t_{s_{1r_1}}, \cdots, t_{s_{m1}}, \cdots, t_{s_{mr_m}})$

Proof. It is the most general preferred plat case and we can get it by applying Proposition 3.5 and Proposition 3.6 inductively. \Box

415

Now we will consider an admissible plat case.

Definition 3.8. Let us define the following two maps:

(i)

$$\pi_{\bar{\beta}}: \{1, 2, \cdots, 2n\} \to \{1, 3, 5, \cdots, 2n-1\} \to \{1, 3, 5, \cdots, 2n-1\} / \sim$$

where $(2i-1) \sim (2j-1)$ if there is a closing such that

{ Top color, Bottom color} = $\{2i - 1, 2j - 1\}$.

Let $\bar{r} = |\{1, 3, 5, \cdots, 2n - 1\} / \sim |$ and let

$$\{c_1, c_2, \cdots, c_{\bar{r}}\} = \{1, 3, 5, \cdots, 2n-1\}/\sim$$

with $c_i < c_j$ if i < j.

(ii) Let $\rho(\beta) = \rho_1 \rho_2 \cdots \rho_r \in S_{2n}$ be a product of disjoint cycles in S_{2n} and s_i be the smallest element of ρ_i . Then we will define

$$\pi_{\hat{\beta}}: \{1, 2, 3, \cdots, 2n\} \to \{s_1, s_2, \cdots, s_r\}$$

such that $\pi_{\hat{\beta}}(i) = s_j$ if *i* is in the cycle of s_j .

By using notations above, we will get the following relations.

Theorem 3.9. Let $\beta \in B_{2n}$ be a braid whose plat closure $\overline{\beta}$ is an admissible plat with color restriction. Then

(3.3)
$$\pi_{\bar{\beta}}(\prod_{i=1}^{2n} (t_i - t_i^{-1})) \nabla_{\bar{\beta}}(t_{c_1}, t_{c_2}, \cdots, t_{c_{\bar{r}}}) = (-1)^n \pi_{\bar{\beta}}(\nabla_{\bar{\beta}}(\pi_{\hat{\beta}}(\{t_1, t_2, \cdots, t_{2n}\}), t_1, t_3, \cdots, t_{2n-1}))$$

and

(3.4)
$$\nabla_{\tilde{\beta}}(t_{s_1}, t_{s_2}, \cdots, t_{s_r}, \underbrace{1, 1, \cdots, 1}_n) = \pi_{\hat{\beta}}(\prod_{i=1}^n (t_{2i-1}t_{2i}^{-1} - t_{2i-1}^{-1}t_{2i})) \nabla_{\hat{\beta}}(t_{s_1}, t_{s_2}, \cdots, t_{s_r}).$$

Proof. Equation (3.3) is a result of Skein relation and Equation (3.4) is a result of Torres conditions of a multi-variable Conway polynomial. \Box

Remark 3.10. Note that, under the same condition as in Theorem 3.9 above, the Conway potential function of $\tilde{\beta}$ is given by

$$\nabla_{\bar{\beta}}(\pi_{\hat{\beta}}(\{t_1, t_2^{-1}, \cdots, t_{2n-1}, t_{2n}^{-1}\}), t_{2n+1}, \cdots, t_{3n}) \doteq \pi_{\hat{\beta}}(\frac{\det(I - \bar{B}_{\beta'}(t_1^2, t_2^2, \cdots, t_{3n}^2))}{1 - t_1^2 t_2^2 \cdots t_{3n}^2})$$

where

$$\beta' = \beta (\prod_{i=1}^{n} (\prod_{j=0}^{2n-(2i+1)} \sigma_{2n-j})) (\sigma_{2i} \sigma_{2i-1}^2 \sigma_{2i}) (\prod_{i=1}^{n} (\prod_{j=0}^{2n-(2i+1)} \sigma_{2n-j}))^{-1}.$$

The reason is following: The link $\tilde{\beta}$ can be considered as in Figure 3. Let $\hat{\beta}'$ be the same as $\tilde{\beta}$ as an unoriented link but all strands are oriented upward. Then we can compute the (non-normalized) Conway potential function by using a Morton's result in [Mor98]. Now, by the orientation change formula for Conway function, we get $\nabla_{\tilde{\beta}}$ as above.

References

- [Bir74] J. S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J., 1974, Annals of Mathematics Studies, No. 82.
- [BK88] J. S. Birman and Taizo Kanenobu, Jones' braid-plat formula and a new surgery triple, Proc. Amer. Math. Soc. 102 (1988), no. 3, 687–695. MR 89c:57003
- [FS98] R. Fintushel and R. Stern, Knots, links, and 4-manifolds, Inventiones Mathematicae 134 (1998), 363–400.
- [Hil81] J. A. Hillman, The Torres conditions are insufficient, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 19–22.
- [Hos84] J. Hoste, Sewn-up r-link exteriors, Pacific J. Math. 112 (1984), no. 2, 347– 382.
- [Kid78] M. E. Kidwell, Alexander polynomials of links of small order, Illinois J. Math. 22 (1978), no. 3, 459–475.
- [Lev65] J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135– 141.
- [Lev67] _____, A method for generating link polynomials, Amer. J. Math. 89 (1967), 69–84.
- [MMS97] J. W. Morgan, Tomasz S. Mrowka, and Zoltán Szabó, Product formulas along T³ for Seiberg-Witten invariants, Math. Res. Lett. 4 (1997), no. 6, 915– 929.
- [Mor83] H. R. Morton, Fibred knots with a given Alexander polynomial, Knots, braids and singularities (Plans-sur-Bex, 1982), Monogr. Enseign. Math., vol. 31, Enseignement Math., Geneva, 1983, pp. 205–222.
- [Mor98] _____, The multivariable Alexander polynomial for a closed braid, Low Dimensional Topology, Contemporary Mathematics, vol. 233, American mathematical Society, 1998, pp. 167–172.
- [Mur93] J. Murakami, A state model for the multivariable Alexander polynomial, Pacific J. Math. 157 (1993), no. 1, 109–135.
- [Sei35] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110(1935), no. 1, 571–592.

[Tor53] G. Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57–89.

[Tur86] V.G Turaev, Reidermeister torsion in knot theory, Russian math. Surveys 41 (1986), no. 1, 119–182.

[Tur01] _____, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001, Notes taken by Felix Schlenk.

Ki-Heon Yun Department of Mathematics, Sungshin Women's University, Seoul 136-742, Korea. E-mail: kyun@sungshin.ac.kr