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THE COMPLETE MOMENT CONVERGENCE FOR
ARRAY OF ROWWISE ENOD RANDOM VARIABLES

DAE-HEE Ryu

Abstract. In this paper we obtain the complete moment conver-
gence for an array of rowwise extended negative orthant depen-
dent random variables. By using the result we can prove the com-
plete moment convergence for some positively orthant dependent
sequence satisfying the extended negative orthant dependence.

1. Introduction

Ebrahimi and Ghosh(1981) and Joag-Dev and Proschan(1983) intro-
duced the concept of negative orthant dependent random variables:

A sequence {X;,1 < i < n} of random variables is said to be nega-
tively upper orthant dependent(NUOD) if for all real numbers z1, - - - , z,

n
(1.1) P(Xy > a1, Xn > ) < [[ P(Xi > a4)
=1

and it is said to be negatively lower orthant dependent(NLOD) if for all
real numbers 1, - , Xy,

=

(1.2) P(Xy<zp,--- , Xy <) <
1

-
Il

A sequence {X;,1 < i < n} of random variables is said to be negatively
orthant dependent(NOD) if it is both NUOD and NLOD.

Recently, Liu(2009) introduced the concept of extended negative de-
pendence in the multivariate case. A sequence {X;,1 < ¢ < n} of
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random variables is said to be extended negatively upper orthant depen-
dent(ENUOD) if for all real numbers z1,--- , x,, there exists a constant
M > 0 such that

n

(1.3) P(Xy> w1, Xn > 20) < M [ P(X; > )

i=1
and it is said to be extended negatively lower orthant dependent(ENLOD)
if for all real numbers z1,--- ,x,, there exists a constant M > 0 such
that

n
(1.4) P(Xy < a1, Xn S ) < M [ PX; < ).

i=1

A sequence {X;,1 < i < n} of random variables is said to be extended
negatively orthant dependent(ENOD) if it is both ENUOD and ENLOD.

It is clear that a sequence {X;,1 < i < n} of random variables is
called NOD if (1.3) and (1.4) hold when M = 1, the sequence is called
positively orthant dependent(POD) if the inequalities (1.3) and (1.4)
hold both in the reverse direction when M = 1. Obviously, an NOD
sequence must be an ENOD sequence. On the other hand, for some
POD sequences, it is possible to find a corresponding positive constant
M such that (1.3) and (1.4) hold.

Therefore, the ENOD structure is substantially more comprehensive
than the NOD structure in which it can reflect not only a negative
dependence structure also positive one to some extent. For instance, the
ENOD sequence {X;,i > 1} in the following example can be taken as
NOD or POD since there are no restrictions on the dependence between
X1 and XQ.

Example(Liu(2009)) If {X;,7 = 1,2} and {X;,7 > 3} are independent
of each other, where X is possibly valued at x1; < z12 < -+ < 21N
and {X;,7 > 3} is a sequence of mutually independent random variables.
Then the sequence {X;,7 > 1} is ENOD. In fact, for any z7 and z2 such
that

P(Xl < xl)P(Xg < IL’Q) =0or P(Xl > (El)P(XQ > 372) =0

both (1.3) and (1.4) hold trivially. Additionally, for any z; and z3 such
that

P(X1 <21)P(Xg <x9) #0 and P(X; > x1)P(Xy > x9) # 0,

take
M = 1/min{P(X1 = xl),P(Xl = .731]\7)},
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then both (1.3) and (1.4) still hold. Notice that there are no dependence
restrictions between random variables X; and Xs.

A sequence of random variables {U,,n > 1} is said to converge com-
pletely to a constant c if for any € > 0,

(1.5) > P(|Upn — | > €) < 0.
n=1

This notion was given by Hsu and Robbins(1947).
Let {Z,,,n > 1} be a sequence of random variables and a,, b, > 0,q >
0. If

o
(1.6) ZanE{bgl\Zn] —e}d < oo forall e >0,

n=1

then (1.6) was called the complete moment convergence by Chow(1988).
Chow(1988) obtained the complete moment convergence for indepen-
dent random variables. Wang and Zhao(2006) investigated for negatively
associated random variables and Zhu(2007) studied for array of rowwise
p*-mixing random variables.
In this paper we study the complete moment convergence for partial
sums of rowwise ENOD random variables.

2. Some lemmas

In this section we introduce some lemmas which will be used to prove
the main result.

Lemma 2.1(Liu(2009)) Let {X;,i > 1} be a sequence of ENOD ran-
dom variables.

(1) If {gi(-),i > 1} is a sequence of monotone increasing(decreasing)
functions, then {¢;(X;),s > 1} is still a sequence of ENOD random
variables.

(2) If X;’s are nonnegative random variables, then there exists a con-
stant M > 0 such that

n

E(J]x) < Mﬂ(EXi)'

i=1 i=1

From (1) and (2) in Lemma 2.1 we obtain the following result.
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Lemma 2.2 Let {X;,i > 1} be a sequence of ENOD random variables.
Then for any h > 0 there exists a constant M > 0 such that

(2.1) Elexp(h Z X)) <M H Elexp(hX;)].

Proof. Note that {exp(hX;),i > 1} is ENOD sequence by Lemma 2.1
(1). Hence by Lemma 2.1 (2) we have

Elexp(h Y Xi)] = E[[Jexp(h X)) < M ] Blexp(hX,)].

i=1 =1

Lemma 2.3 Let {X,,,n > 1} be a sequence of ENOD random variables
with mean zero and 0 < B, = Y. | EX? < co. Then there exists a
M > 0 such that for all x > 0,y > 0,

(22) P(|Sa| > 2) <Y P(Xi| > y) + 2Mexp(§ . glog(l + Fy)),

i=1 n

where S, = > " | X.

Proof. The proof is similar to that of Theorem 2 in Fuk and Nagev(1971).
Let YV; = X;I(X; < y)+yl(X; > y) and T, = > ;" | Y; and note that
Y; < X;. It is easy to show that EY; <0 and EY;?> < EX?. By Lemma
2.1 (1) for h > 0 {eMi,1 < i < n} is a sequence of nonnegative ENOD
random variables. Thus, by Lemma 2.2 there exists a constant M > 0
such that

(2.3) Eexp(hT,) = E [[exp(hY;) < M [ E exp(hY;).
=1 =1
Let Fi(z) = P(X; < ;). Then, we have for h > 0

(2.4) Eexp(hY;) = /y exp(h(z))dF;(z) + " P(X; > y)

— 00

Yy
1+ hEY; + / (e"® —1 — ha)dF;(z) + (" — 1 — hy)P(X; > y)

— 00

IA

1+ /U (" — 1 — hx)dF;(z) + (" — 1 — hy)P(X; > ).
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Since f(z) = (e" — 1 — hz)/x? is increasing for all z, h > 0 and
1+ u < e for all real number u it follows from (2.4) that

y? oo

e —1—hy
Y2
hy —1-h
e o1hy g
)
Therefore by (2.3) and (2.5) we obtain, for all > 0 and all » > 0

ehy—l—hy)
y? '

W1 —hy, (Y
(25) Bewp(n) < 1+ ([ Rane) + 2P 2 )

< 1+ EX?

< exp(

(2.6) exp(—hx)E exp(hT,) < M exp(—hx + B,

Letting h = log(1 + 5*)/y, we have
(2.7) exp(—hx)E exp(hT),)

r Ty B, xy
< Mexp|— — —log(l + —) — — log(1 + ==
£ = Dlog(1 + ) - 3 log(1 + )

r Ty
< Mexp|— — —log(1+ ==)|,
=~ Zog(1+ 22

which yields
(2.8) P(S,>z) < P(S,#T,+ P(T,>x)

> P(Xi > y) + exp(hz)E exp(hT,)
i=1

IN

n

r x x
ZP(XZ' >y) + M exp[— — —log(1 + —y)]
= y oy By,

IN

Similarly, we have
(29) P(-S8,>2) <Y P(-X;>y)+ Mexp[g - glog(l + ?)}
i=1 "
since {—X,,,n > 1} is a sequence of ENOD by Lemma 2.1 (1).
From (2.8) and (2.9) we obtain

P(|Sp| > x) < P(Sp,>zx)+ P(—S, > x)
x

n
X xr
< S P(Xi|>y) + 2Mexp[§ ~ glog(l n Bl)}.
i=1 n
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3. Complete moment convergence

Theorem 3.1 Let {X,;,1 < i < n,n > 1} be an array of ENOD
random variables with £X,; = 0 and EXgi <oo,forl<i<n,n>1
and {ay,n > 1} be a sequence of positive real numbers with a,, 1. If

oo n
EX2.
3.1 — < oo,
o 2

then we obtain

Za;lE{\ ZXm| —ean}t < oo for all € > 0.

n=1 i=1
Proof.
[eS) n [eS) 0o n
Za;lE{\ZXm-\ —ean}t = Za;l/ (P{|ZXni|—ea"} > w)du
n=1 i=1 n=1 0 i=1
(3.2) = > a,! / P{> Xnil > ean +uldu
n=1 0 i=1

oo

+Zar—11 /OO P{| i:Xm| > ea, + uldu

n=1 n i=1

S OP{D Xl > ean}
n=1 =1

—|—§:a;1 /Oo P{ ZXMI > u}tdu
n=1 a

n i=1

IN

= I+1I

We need to prove that I < oo and I < oo.
Forany 1 <i<n,n>1, let

Yoii = —and(Xni < —an) + Xnil (| X0 < an) + anl(Xni > an),
(33) Zni = Xpi— Yo
= (Xni+an)(Xpi < —ap) + (Xni — an)(Xpi > ap).
To prove I < o0, it is enough to show that

(3.4) ZP(;\ZZM\ > ) < o0,

n=1 i=1

[o¢] 1 n
(3.5) > P(a—| D (Yni — EY,i)| > €) < o0,
n=1 =1
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(3.6) o ;EYM — 0 as n — oo.
Because the proof of (3.4) is a standard argument, we omit to prove
(3.4). Now we prove (3.5).

By Lemma 2.1 (1) {Y,; — EYy, 1 < i <n,n > 1} is an array of row-
wise ENOD random variables with mean zero. Let B, = 31 | E(Yy; —
EY,;)? < cc. Take x = €ay, y = €a,/2. Then, by Lemma 2.3, for all
e>0

(3.7) Z P(aln’ Z(ym CEY)| > o)

’

B

2 n 2

—Il+[2.

Note that |Yp;| < |Xy| and EYZ < EX2, for i,1 <i < n.
By (3.1) and the Chebyshev’s inequality

(38)I; < iip(\Ym—Eme > €an/2)

n=1 i=1
2
< 42 — EYni)
o0 n
< 4672ZZ%<00.
n=1i=1 @n

By (3.1) we obtain

39) L < 2‘4MZ Za‘QE ni — EYyi)*)?

n=1 =1

IA IA IA

Mg 118 1[e |

M M M
Dﬁ m tq
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From (3.7)-(3.9) (3.5) follows.

To prove (3.6): Since EX,; =0for 1 <i<n,n>1, EY,; = —EZ,;.
If X,; > an, 0 < i = Xpi — ap < Xy and if X,; < —Qp, Xni < Zpi =
Xni +an <0. So | Zni| < | XnilI(| Xni| > an). Consequently

1, — 1, —
Q—\ZEYM-| = ;\ZEZ,”;
=1 =1

a
i=1 n

IN

" Ean| X[ T(| Xnis| > an)
)Y

IA

i=1

EX2,
Z 2 ' — 0 asn— oo by (3.1).
i=1

IN

Hence the proof of I < oo is complete.
Next we prove that 11 < oo.

o] n 0o
< Za,;lz/ P{X| > u}du
n=1 i=1"04n
o] n o) n
—l—Zaan/ P{D> (1 Xnil < u)| > uldu
n=1 i=1"%n i=1

= IL +1I5.

Clearly, for u > a,, we have

L = ZZa_l/ P{|Xp;i| > u}du

n=1 i=1

= Zza_l/ P{| X[ I(| Xni| > an) > u}du
n=1i=1
E‘Xmu |an| > n)
= Z:lz a
< 2 B by ),

n=1 i=1 n
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It remains to prove Il < co. It follows from EX,; =0 and (3.1) that

n n
-1 —1
E EXpil(| X < = E EX i I(1 X0
ggjlu — nid (| Xni| < u)| Lrg%}s’u — nid (| Xni| > u)
1= 1=

zn: B Xni[I(| Xni| > an)

an

IN

i=1
n

EX2
< DM = 0by (3).
i=1 "
Therefore, while n is sufficiently large, for u > ay,

’ZEXMI(’XM‘ <u)| <

U
; -2
=1

which yields

(310)  P{Y_ Xuid (1Xnil < )| > u}
=1

n u
< P (Xl (1 Xni] < ) = EXni (| Xi| < w))] > 5
=1

Let B, = S0 | B(Xni — EXp) (| X0 < u), 2= Y,y
and Lemma 2.3 we get

u. By (3.10)

S) 00 n
_ u
I, < }:anl/ PO Xl (Xl < 0) — BEXoi(1Xoi] < )] > 5 Y
n=1

an i=1

IN

00 o M
_ u
Zanl/ > PUXwlI(1 X0l < 0) = EXul (X0l < w) > S}du
n=1 n =1

"

oo 00 B
+262M2a;1/ (——)%du

n=1 an B;; + %ﬁ
= 1y + 115.
By (3.1) and EX,,; =0 we also have
max u | EXpi (| Xni| <u)] = maxu HEXp (| Xni| > )l
u>an u>an

< ar_LlE’Xmu(‘Xn” > ay)|
n
EX2
< Dt o0
=1 n
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Hence,

11y

IN

ZZG_I/ P{|mel ‘an| < U) > }du

n=1 i=1

- Zza_l/ P{| X0l L(| Xni] < an) > }du

n=1 i=1

+ZZa / P{| Xill (an < |Xni| <u) > }du
n=1 =1
= Il + 112.

By the Chebyshev’s inequality and (3.1) we have

oo n 00
1211 S 64ZZa;1E\Xm\ZI(]Xm\San)/ u_2du
an

n=1i=1

o n 12 | <
< 64ZZE|XM| I(| Xni] < an) < 00

2
a
n=1 i=1 n

By the similar method to proof of 11}

e = 33 ! / PUXol (@ < Xl < )| > )

n=1 i=1

SNt [ PRl > an)] >

n=1 i=1

_ 82 Z E| X |I( \Xm| > ay)

n=1i=1

8ZZEX2

n=1 i=1 i

IN

IN
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Finally, we have to prove Ils9 < oo. By the fact that for z > 0,y > 0
(z+y)? <22 +¢?)

Il =

IN

IN

IN

B//
2€2MZCL71 / 3”7_:112)2du

B
128¢°M ) a,* —2)%d
8e nz_:lan / (u2 ) du

Qn

o 1 [T EX3I(|Xni] < an)
128€2Mzan1/ > -

U
n=1 n =1

+Z": EX2.I(a, < | Xpi| < u)

u2

)V2du
i=1

u

00 co N 2
EXI1(1X,; <
25662M2a;1/ (Z il (] an’ _a”>)2du

n=1 an =1

o 00 9
+256€2M E anl/ ( ni (an < | m| > u)

2
an U

11591 4+ I1595.

Let C = 256e2M.

1159,

= CZ(L_I ZE I(| Xpi| < an))? /OO utdu

an

< 72 _4 ZE |an| < an))
C = E|Xm|2-7(\Xm'| < ap).o
< Oy a2 )
n=1 i=1 n
C 2~ E( X 21 Xnil < ap,
< O3y I,
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e n
B X, (a, < | X <
Iy < CZa;l (Z [ Xnil I (an < | m\_u))Qdu
n=1 an  ;—1 u
oo o n
E\ X 1| Xn:| >
< oy at [Ty FRIR = g,
n=1 an i=1
0o
= CZ _IZE|XM|I | Xnil > an))? / uw2du
n=1 an
o3 B
n=1 =1 an
EX2 (|an|>an) 9
< ey y BRI ),
n=1 i=1 n
o n
EX2.
 of
n=1 i=1 n
EX2
<
n=1 i=1 "

Remark In the proof of Theorem 3.1 from the fact that I < oo we

obtain the complete convergence >, )i i — 0.

Corollary 3.2 Let {X,,;,1 <i <mn,n > 1} be an array of POD random
variables with £X,,; = 0 and EX2 < oo and {an,n > 1} be a sequence
positive real numbers with a, T oco. If there exists a constant M >

1 satisfying (1.4) and condition (3.1) then > 0, a, *E{| Y0 Xpil —
€an}4 < 00.
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