REPRESENTATIONS OF $U_{3,6}$ AND $A G(2,3)$

Seung Ho Ahn and Boong Bi Han

Abstract

One of the main interesting things of a matroid theory is the representability by a matroid from a matrix over some field F. The representability of uniform matroid $U_{m, n}$ over some field are studied by many authors. In this paper we construct a matrix representing $U_{3,6}$ over the field $G F(4)$. Also we find out matrix of the affine matroid $A G(2,3)$ over the field $G F(4)$.

1. Introduction

Matroid theory came from graph theory. Matriod can be defined in many different ways. Given an $m \times n$ matrix A, we obtain a vector space of n column vectors. The generalization of properties of independent sets of these vectors is the definition of matroid by independence:

Definition 1.1. For a finite set E , let \mathcal{I} be a collection of subsets of E satisfing the following three conditions ;
(a) $\emptyset \in \mathcal{I}$
(b) If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$.
(c) If I_{1} and I_{2} are in \mathcal{I} and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.

Then $M=(E, \mathcal{I})$ is called a matroid on E and the members of \mathcal{I} are independent sets of M , and $E=E(M)$ is the ground set of M. A subset of E that is not in $\mathcal{I}=\mathcal{I}(M)$ is called dependent. A minimal dependent set is called circuit. There are many different ways of defining $\operatorname{matroid}([4])$.

The definition by circuits comes from the cycles of graph. Let $\mathrm{E}=\mathrm{E}(\mathrm{G})$ be the set of edges of a graph G. The collection \mathcal{I} of all subsets of $E(G)$

[^0]which does not contain a cycle of G satisfies the conditions of definitions 1.1. Thus $(\mathrm{E}(\mathrm{G}), \mathcal{I})$ is a matroid which is called cycle matroid and denoted by $\mathrm{M}(\mathrm{G})$.

Two matroids M_{1} and M_{2} are isomorphic if there is a bijection ψ from $E\left(M_{1}\right)$ to $E\left(M_{2}\right)$ such that for each $X \in \mathcal{I}\left(M_{1}\right), \psi(X) \in \mathcal{I}\left(M_{2}\right)$.

A matroid that is isomorphic to the cycle matroid of a graph is graphic. A rank of a matroid is the number of elements of a maximal independent set. Maximal independent sets are called bases. Let B be a basis of a matroid M and $e \in E(M)-B$. The circuit containing e is called the fundamental circuit with ruspect to B .

Matroids with rank less than 5 can be drawn in Euclidean space \mathbb{R}^{3}. A diagram of a matroid in Euclidean space should be understood as the following; Two identical points, three(four, five) point sets in a line(plane,space) are circuits. This is called the geometric representation of a matroid. Sometimes lines can be drawn as arc or circle. A matroid coming from a matrix A will be denoted by $\mathrm{M}[\mathrm{A}]$.

Example 1.2.

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Then the circuits of the matroid $\mathrm{M}[\mathrm{A}]$ are

$$
\{2,5\},\{1,2,4\},\{1,4,5\},\{2,3,6\},\{3,5,6\}
$$

The geometric representation of $\mathrm{M}[\mathrm{A}]$ is

Let m and n be non-negative integers such that $m \leq n$. Let E be an n-element set and \mathcal{I} be the collection of subsets of E with cardinality less then or equal to m . Then (E, \mathcal{I}) is a matroid which is denoted by
$U_{m, n}$. These matroids are called uniform matroids. The representability of $U_{m, n}$ are studied by many authors.([1],[2],[5],[7])

Now, if F is a finite field, then F has exactly p^{k}-elements for some prime p. When $k>1, G F\left(p^{k}\right)$ can be constructed as follows. Let $h(w)$ be a irreducible polynomial of degree k with coefficients Z_{p}. Consider the set S of all polynomials in w that have degree at most $\mathrm{k}-1$ and have coefficients in Z_{p}. Under addition and multiplication both of which are performed modulo $h[w], \mathrm{S}$ forms a field and this field is denoted by $G F\left(p^{k}\right)$.

Example 1.3. Since $h(w)=w^{2}+w+1$ is irreducible over Z_{2}, the multiplication tables for $G F(4)=\{0,1, w, w+1\}$ are the following.

+	0	1	w	$w+1$
0	0	1	w	$w+1$
1	1	0	$w+1$	w
w	w	$w+1$	0	1
$w+1$	$w+1$	w	1	0

\times	0	1	w	$w+1$
0	0	0	0	0
1	0	1	w	$w+1$
w	w	$w+1$	0	1
$w+1$	$w+1$	w	1	0

Let $V=V(n+1, G F(q))$ be an (n+1)-dimensional vector space over $G F(q)$. The projective space of V will be denoted by $P G(n, q)$. The affine space $A G(n, q)$ is obtained from $P G(n, q)$ by deleting from the later all the points of a hyperplane. $P G(n, q)$ and $A G(n, q)$ can be considered as matroids. Let G be a graph. Form a directed graph $D(G)$ from G by arbitrarily assigning a direction to each edge. Let $A_{D(G)}=\left[a_{i j}\right]$ denote the incidence matrix of $D(G)$. That is, $A_{D(G)}$ is the matrix $\left[a_{i j}\right]$ where rows and columns are indexed by the vertices and arcs, respectively of $D(G)$ where

$$
a_{i j}=\left\{\begin{array}{cl}
1 & \text { if vertex } i \text { is the tail of non-loop arc } j \\
-1 & \text { if vertex } i \text { is the head of non-loop arc } j \\
0 & \text { if otherwise }
\end{array}\right.
$$

A matroid M is F-represeutable if M is isomorphic to $M[A]$ for a matrix A over F .

Example 1.4. If G and $D(G)$ are the following,

G

$$
D(G)
$$

then

$$
A_{D(G)}=\begin{gathered}
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & -1 & 0 & 1 & 0
\end{array}\right]
$$

We have the following property:
Proposition 1.5. If G is a graph, then $M(G)$ is representable over every field([6]).

2. Constructing representations for matroids

Two matrices A_{1}, A_{2} are equivalent if $M\left[A_{1}\right]$ and $M\left[A_{2}\right]$ are isomorphic. By the properties of independence of vectors, it is easy to see that if M is a rank r matroid representation by A, then A is equivalent to a standard representation $\left[I_{r} \mid D\right]$, where I_{r} is the $r \times r$ identity matrix. Let D^{*} be the matrix obtained from D by replacing each non-zero entry of D by 1 , then D^{*} is called the B -fundamental circuit incidence matrix of M and $\left[I_{r} \mid D^{*}\right]$ is called a partial representation for M. Now let M be a rank r matroid and B be the basis $\left\{e_{1}, \cdots, e_{r}\right\}$ for M. Let $X=\left\{e_{r+1}, e_{r+2}, \cdots, e_{n}\right\}$ be the B-fundamental circuit incidence matrix of M. Then $X=D^{*}$. Let $G\left(D^{*}\right)$ denote the associated simple bipartite graph. That is $V\left(G\left(D^{*}\right)\right)=\left\{e_{1}, \cdots, e_{r}\right\} \cup\left\{e_{r+1}, \cdots, e_{n}\right\}$ and two vertices e_{i} and e_{j} are adjacent if and only if row e_{i} and column e_{j} is 1 .

Example 2.1.

$$
X=D^{*}=\begin{gathered}
\\
e_{1} \\
e_{2} \\
e_{3}
\end{gathered} \begin{array}{ccc}
e_{4} & e_{5} & e_{6} \\
{\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]}
\end{array}
$$

Theorem 2.2. Let $r \times n$ matrix $\left[I_{r} \mid D\right]$ be an F-representation for the matroid M. Let $\left\{b_{1}, \cdots, b_{m}\right\}$ be a basis of the cycle matroid of $G\left(D^{*}\right)$. Then $m=n-w\left(G\left(D^{*}\right)\right)$, where $w\left(G\left(D^{*}\right)\right)$ is the number of connected components of $G\left(D^{*}\right)$. Moreover, if $\left(\theta_{1}, \theta_{2}, \cdots, \theta_{m}\right) \in(F-\{0\})^{m}$, then M has an F-representation $\left[I_{r} \mid D_{1}\right]$ that is equivalent to $\left[I_{r} \mid D\right]$ such that, for each $i \in\{1,2, \cdots, m\}$, the entry corresponding to b_{i} is θ_{i}.

Proof. If G is a connected graph, then the rank of $M(G)$ is the number of edges of a spanning tree T of G. Because $|V(T)|=|E(T)|+1$, we can see that $m=n-w\left(G\left(D^{*}\right)\right)$.

Let G be a forest of $G\left(D^{*}\right)$. For each $x \in E(G)$, let $\theta(x)$ be a non-zero element of F. We shall show, by induction on m , that we can obtain a matrix $\left[I_{r} \mid D_{1}\right.$] which is equivalent to $\left[I_{r} \mid D\right]$ such that for each $x \in E(G)$, the entry in D_{1} corresponding to x is $\theta(x)$. It is trivially true for $|E(G)|=0$. Assume it is true for $|E(G)|<m$ and let $|E(G)|=m \geq 1$. As G is a forest with at least one edge, it has a vertex v of degree one. Let y be the edge of G with vertex v. By induction hypothesis we obtain a matrix $\left[I_{r} \mid D_{1}\right]$ which is equivalent to $\left[I_{r} \mid D\right]$ such that for each $x \in E(G \mid y)$, the entry of D_{1} corresponding to x is $\theta(x)$. The vertex v of $G\left(D^{*}\right)$ corresponds to a row or a column of D_{1}. If v corresponds to a row, none of the entries of D_{1} corresponding to edge of $G_{1} \backslash y$ is in this row. We can multiply this row by an appropriate nonzero scalar t (if the y entry is a, $t=\theta(y) / a$) to make the y-entry equal to $\theta(y)$ without changing any of the $(G \mid y)$-entries. The multiplication may alter the entry in row v of I_{r}. But multiplying the corresponding column by t^{-1} will fix this without affecting any other entries. In the other case, by multiplying non-zero scalar to the column, the y-entry can be equal to $\theta(y)$ without affecting any of the $(G \mid y)$-entries. It follows the result by induction.

3. Representations

Let $E=\{1,2,3,4,5,6\}$ and let $\mathcal{I}=\{I \subset E \| I \mid \leq 3\}$. Then $U_{3,6}=$ (E, \mathcal{I}), as was defined in the introduction. By the definition of $U_{3,6}$, any of the three columns of the partial representation $\left[I_{3} \mid D^{*}\right]$ is independent. Thus all the entries of D^{*} should be 1 . That is

$$
D^{*}=\begin{array}{lll}
4 & 5 & 6 \\
2 \\
3
\end{array}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

By Theorem 2.2, taking a basis,

the entries of $\left[I_{3} \mid D_{1}\right]$ corresponding to the five entries can be filled with any non-zero elements of F. If we fill out 1's to the entries the matrix $\left[I_{3} \mid D_{1}^{*}\right]$ which we are looking for is the form of

$$
\begin{aligned}
& 1 \\
& {\left[\begin{array}{lll|lll}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 0 & 0 & 1 & b \\
0 & 0 & 1 & 1 & 1 & c \\
1 & d & 1
\end{array}\right]}
\end{aligned} .
$$

Because any of the three columns of this matrix are independent, we have the following equations,

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 4 & 5 \\
1 & a & 1 \\
0 & 1 & 1 \\
0 & 1 & d
\end{array}\right|=d-1 \neq 0, \quad\left|\begin{array}{ccc}
1 & 4 & 6 \\
1 & a & b \\
0 & 1 & c \\
0 & 1 & 1
\end{array}\right|=1-c \neq 0 \\
& \begin{array}{lll}
1 & 5 & 6
\end{array} 2 \begin{array}{lll}
2 & 4 & 5
\end{array} \\
& \left|\begin{array}{lll}
1 & 1 & b \\
0 & 1 & c \\
0 & d & 1
\end{array}\right|=1-c d \neq 0, \quad\left|\begin{array}{lll}
0 & a & 1 \\
1 & 1 & 1 \\
0 & 1 & d
\end{array}\right|=1-a d \neq 0, \\
& \begin{array}{lll}
2 & 4 & 6
\end{array} \quad 2 \begin{array}{lll}
2 & 6
\end{array} \\
& \left|\begin{array}{ccc}
0 & a & b \\
1 & 1 & c \\
0 & 1 & 1
\end{array}\right|=b-a \neq 0, \quad\left|\begin{array}{ccc}
0 & 1 & b \\
1 & 1 & c \\
0 & d & 1
\end{array}\right|=b d-1 \neq 0, \\
& \begin{array}{lll}
3 & 4 & 5
\end{array} \quad 3 \quad 4 \quad 6 \\
& \left|\begin{array}{lll}
0 & a & 1 \\
0 & 1 & 1 \\
1 & 1 & d
\end{array}\right|=a-1 \neq 0, \quad\left|\begin{array}{lll}
0 & a & b \\
0 & 1 & c \\
0 & 1 & 1
\end{array}\right|=a c-b \neq 0, \\
& 3 \quad 56 \\
& \left|\begin{array}{lll}
0 & 1 & b \\
0 & 1 & c \\
1 & d & 1
\end{array}\right|=c-b \neq 0
\end{aligned}
$$

In the field $G F(4)$, if we take $b=1$ and $a=c=d=w+1$, then $a c=c d=a d=(w+1)(w+1)=w, b d=1(w+1)=w+1$. Therefore a matrix which we want to find is

$$
D_{1}=\left|\begin{array}{ccc}
w+1 & 1 & 1 \\
1 & 1 & w+1 \\
1 & w+1 & 1
\end{array}\right|
$$

Thus we have the following property;
Theorem 3.1. $U_{3,6}$ is F-representable if and only if $|F| \geq 4$.
Now if we look at the projective space $P G(2,3)$ from the vector space $V\left(3, \mathbb{Z}_{3}\right)$, we can see that there are 13 points and there exist four hyperplanes passing through each point in $P G(2,3)$. Also each hyperplane contains four points. Thus a geometric representation of $P G(2,3)$ is the following:

$P G(2,3)$

Outer four points in the diagram are in a hyperplane of $P G(2,3)$. By deleting these points, we have the following geometric representation of $A G(2,3)$.

AG(2,3)
If we take a base $\{1,2,3\}$ in $A G(2,3)$, we have the following partial representation of $A G(2,3)$,

$$
\left[I_{3} \mid D^{*}\right]=\left[\begin{array}{ccc|cccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

From

$$
D^{*}=\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}\left[\begin{array}{llllll}
4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

the bipartite graph $G\left(D^{*}\right)$ is the following:

Let's take a maximal tree

Then, by Theorem 2.2, a matrix $\left[I_{3} \mid D_{1}\right]$ of $A G(2,3)$ is the following form:

$$
\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & b & c & d \\
0 & 1 & 1 & 0 & a & 1 & e & f & g
\end{array}\right]
$$

Because the determinants of the circuit columns are zero, we have the following equations:

$$
\begin{aligned}
& \begin{array}{lllllll}
5 & 6 & 7 & 3 & 4 & 7
\end{array} \\
& \left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & b \\
a & 1 & e
\end{array}\right|=e-a-b=0,\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & b \\
a & 1 & e
\end{array}\right|=b-1=0, \\
& \begin{array}{llll}
4 & 5 & 9
\end{array} \quad 2 \quad 7 \quad 9 \\
& \left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & d \\
0 & a & g
\end{array}\right|=a-a d-g=0, \quad\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & b & d \\
0 & e & g
\end{array}\right|=e-g=0, \\
& \begin{array}{lll}
1 & 6 & 9
\end{array} \quad 1 \begin{array}{lll}
1 & 8
\end{array} \\
& \left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & d \\
0 & 0 & g
\end{array}\right|=g-d=0, \quad\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & c \\
0 & e & f
\end{array}\right|=f-c e=0, \\
& \begin{array}{lll}
4 & 6 & 8
\end{array} \quad 3 \begin{array}{lll}
3 & 9
\end{array} \\
& \left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & c \\
0 & 1 & f
\end{array}\right|=f+1-c=0,\left|\begin{array}{ccc}
0 & 1 & 1 \\
0 & c & d \\
1 & f & g
\end{array}\right|=d-c=0 .
\end{aligned}
$$

By the equations, we have $c=d=g=e$.
If we denote these same number by x, we have the following equation: $f-x^{2}=0, f+1-x=0$
From these equations, we have $x^{2}-x+1=0$.

Because

$$
(w+1)^{2}-(w+1)+1=w-(w+1)+1=0
$$

$x^{2}-x+1=0$ has a solution $w+1$ in $G F(4)$. If we take $f=a=w$, the matrix

$$
\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & w+1 & w+1 \\
0 & 0 & 1 & 0 & w & 1 & w+1 & w & w+1
\end{array}\right]
$$

is a representations of $A G(2,3)$ over $G F(4)$.
Furthermore we proved the following theorem
Theorem 3.2. $A G(2,3)$ is F-representable if and only if F has a root of the equation $x^{2}-x+1=0$.

References

[1] Bixby, R,E. On Reid's characterization of the tenary matroids, J.Comb. Theory Ser. B 174-204,1979.
[2] Geelen,J.F, Gerards, A.M.H and A.kapoor, The Excluded minorns for GF(4)representable matroids, J.Combin. Theory Ser. B, 247-299, 2000.
[3] Geelen,J. Maxhew, Dillon Inequivalent representations of matroids having no U3,6-minor, J.Combin Theory Ser. B, no. 1 55-67, 2004.
[4] Kung, P.S, Twelve view of matroid theory, combinatorial and computational mathematics, (Pohang, 2000) 56-96, World Sci.pull., River edge, NJ, 2001.
[5] Kahn.J and Seymour P., On forbidden minors for $G F(3)$, Proc. Amer.Math. Soc, 102 437-440, 1988.
[6] J.Oxley, Matroid theory, Oxford university press, Inc, New york, 1992.
[7] Seymour,P.D, matroid representation over GF(3), J.Combin Theory set, B26,159-173, 1979.

Seung Ho Ahn

Department of Mathematics, Chonnam National University, Gwangju 500-757, Korea.
E-mail: shahn@chonnam.ac.kr

Boong Bi Han

Department of Mathematics, Chonnam National University, Gwangju 500-757, Korea.
E-mail: beebeecj@hanmail.net

[^0]: Received July 19, 2011. Accepted September 5, 2011.
 2000 Mathematics Subject Classification. 52C40, 60 J 10.
 Key words and phrases. Graphic matroid, Uniform matroid, Affine space, Representation of F .

 The first author was partially supported by Chonnam National University.

