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REPRESENTATIONS OF U3,6 AND AG(2, 3)

Seung Ho Ahn and Boong Bi Han

Abstract. One of the main interesting things of a matroid theory
is the representability by a matroid from a matrix over some field
F. The representability of uniform matroid Um,n over some field
are studied by many authors. In this paper we construct a matrix
representing U3,6 over the field GF (4). Also we find out matrix of
the affine matroid AG(2, 3) over the field GF (4).

1. Introduction

Matroid theory came from graph theory. Matriod can be defined in
many different ways. Given anm× nmatrix A, we obtain a vector space
of n column vectors. The generalization of properties of independent sets
of these vectors is the definition of matroid by independence:

Definition 1.1. For a finite set E, let I be a collection of subsets of
E satisfing the following three conditions ;

(a) ∅ ∈ I
(b) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.
(c) If I1 and I2 are in I and |I1| < |I2| , then there is an element

e ∈ I2 \ I1 such that I1 ∪ e ∈ I.
Then M = (E,I) is called a matroid on E and the members of I

are independent sets of M, and E = E(M) is the ground set of M. A
subset of E that is not in I = I(M) is called dependent. A minimal
dependent set is called circuit. There are many different ways of defining
matroid([4]).

The definition by circuits comes from the cycles of graph. Let E=E(G)
be the set of edges of a graph G. The collection I of all subsets of E(G)
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which does not contain a cycle of G satisfies the conditions of defini-
tions 1.1. Thus (E(G),I) is a matroid which is called cycle matroid and
denoted by M(G).

Two matroids M1 and M2 are isomorphic if there is a bijection ψ
from E(M1) to E(M2) such that for each X ∈ I(M1), ψ(X) ∈ I(M2).

A matroid that is isomorphic to the cycle matroid of a graph is
graphic. A rank of a matroid is the number of elements of a maxi-
mal independent set. Maximal independent sets are called bases. Let B
be a basis of a matroid M and e ∈ E(M) −B. The circuit containing e
is called the fundamental circuit with ruspect to B.

Matroids with rank less than 5 can be drawn in Euclidean space
R3. A diagram of a matroid in Euclidean space should be understood
as the following; Two identical points, three(four, five) point sets in a
line(plane,space) are circuits. This is called the geometric representation
of a matroid. Sometimes lines can be drawn as arc or circle. A matroid
coming from a matrix A will be denoted by M[A].

Example 1.2.

A =

1 2 3 4 5 6⎡
⎣

1 0 0 1 0 0
0 1 0 1 1 1
0 0 1 0 0 1

⎤
⎦ .

Then the circuits of the matroid M[A] are

{2, 5}, {1, 2, 4}, {1, 4, 5}, {2, 3, 6}, {3, 5, 6}.
The geometric representation of M[A] is

•

• •

•

••

1

2 3

4

6

5

Let m and n be non-negative integers such that m ≤ n. Let E be an
n-element set and I be the collection of subsets of E with cardinality
less then or equal to m. Then (E,I) is a matroid which is denoted by
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Um,n. These matroids are called uniform matroids. The representability
of Um,n are studied by many authors.([1],[2],[5],[7])

Now, if F is a finite field, then F has exactly pk-elements for some
prime p. When k > 1, GF (pk) can be constructed as follows. Let h(w)
be a irreducible polynomial of degree k with coefficients Zp. Consider
the set S of all polynomials in w that have degree at most k-1 and have
coefficients in Zp. Under addition and multiplication both of which are
performed modulo h[w], S forms a field and this field is denoted by
GF (pk).

Example 1.3. Since h(w) = w2 + w + 1 is irreducible over Z2, the
multiplication tables for GF (4) = {0, 1, w,w + 1} are the following.

+ 0 1 w w + 1
0 0 1 w w + 1
1 1 0 w + 1 w
w w w + 1 0 1

w + 1 w + 1 w 1 0

× 0 1 w w + 1
0 0 0 0 0
1 0 1 w w + 1
w w w + 1 0 1

w + 1 w + 1 w 1 0

Let V = V (n+1, GF (q)) be an (n+1)-dimensional vector space over
GF (q). The projective space of V will be denoted by PG(n, q). The
affine space AG(n, q) is obtained from PG(n, q) by deleting from the
later all the points of a hyperplane. PG(n, q) and AG(n, q) can be
considered as matroids. Let G be a graph. Form a directed graph
D(G) from G by arbitrarily assigning a direction to each edge. Let
AD(G) = [aij] denote the incidence matrix of D(G). That is, AD(G) is
the matrix [aij ] where rows and columns are indexed by the vertices and
arcs, respectively of D(G) where

aij =

⎧⎪⎨
⎪⎩

1 if vertex i is the tail of non-loop arc j,

−1 if vertex i is the head of non-loop arc j,

0 if otherwise.

A matroid M is F-represeutable if M is isomorphic to M[A] for a
matrix A over F.

Example 1.4. If G and D(G) are the following,
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•

• •

•

a

1 b 2 d

4

c

3

5

G

•

• •

•

a

1 b 2 d

4

c

3

5

D(G)

then

AD(G) =
a
b
c
d

1 2 3 4 5⎡
⎢⎢⎣

1 0 0 0 0
−1 1 1 0 0
0 0 −1 −1 0
0 −1 0 1 0

⎤
⎥⎥⎦ .

We have the following property:

Proposition 1.5. If G is a graph, then M(G) is representable over
every field([6]).
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2. Constructing representations for matroids

Two matrices A1, A2 are equivalent if M [A1] and M [A2] are isomor-
phic. By the properties of independence of vectors, it is easy to see that
if M is a rank r matroid representation by A, then A is equivalent to a
standard representation [Ir | D], where Ir is the r × r identity matrix.
Let D∗ be the matrix obtained from D by replacing each non-zero entry
of D by 1, then D∗ is called the B-fundamental circuit incidence matrix
of M and [Ir | D∗] is called a partial representation for M . Now let
M be a rank r matroid and B be the basis {e1, · · · , er} for M . Let
X = {er+1, er+2, · · · , en} be the B-fundamental circuit incidence matrix
of M . Then X = D∗. Let G(D∗) denote the associated simple bipar-
tite graph. That is V (G(D∗)) = {e1, · · · , er} ∪ {er+1, · · · , en} and two
vertices ei and ej are adjacent if and only if row ei and column ej is 1.

Example 2.1.

X = D∗ = e1
e2
e3

e4 e5 e6⎡
⎣

1 0 1
0 1 1
1 1 0

⎤
⎦

�

�

�

�

�

�

e1

e2

e3

e4

e5

e6

G(D∗)

Theorem 2.2. Let r×nmatrix [Ir | D] be an F-representation for the
matroid M . Let {b1, · · · , bm} be a basis of the cycle matroid of G(D∗).
Then m = n− w(G(D∗)), where w(G(D∗)) is the number of connected
components of G(D∗). Moreover, if (θ1, θ2, · · · , θm) ∈ (F − {0})m, then
M has an F-representation [Ir | D1] that is equivalent to [Ir | D] such
that, for each i ∈ {1, 2, · · · ,m}, the entry corresponding to bi is θi.

Proof. IfG is a connected graph, then the rank ofM(G) is the number
of edges of a spanning tree T of G. Because |V (T )| = |E(T )| + 1, we
can see that m = n− w(G(D∗)).
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Let G be a forest of G(D∗). For each x ∈ E(G), let θ(x) be a
non-zero element of F . We shall show, by induction on m, that we
can obtain a matrix [Ir | D1] which is equivalent to [Ir | D] such that
for each x ∈ E(G), the entry in D1 corresponding to x is θ(x). It is
trivially true for |E(G)| = 0. Assume it is true for |E(G)| < m and let
|E(G)| = m ≥ 1. As G is a forest with at least one edge, it has a vertex
v of degree one. Let y be the edge of G with vertex v. By induction
hypothesis we obtain a matrix [Ir | D1] which is equivalent to [Ir | D]
such that for each x ∈ E(G|y), the entry of D1 corresponding to x is
θ(x). The vertex v of G(D∗) corresponds to a row or a column of D1. If
v corresponds to a row, none of the entries of D1 corresponding to edge
of G1 \y is in this row. We can multiply this row by an appropriate non-
zero scalar t (if the y entry is a, t = θ(y)�a) to make the y-entry equal
to θ(y) without changing any of the (G|y)-entries. The multiplication
may alter the entry in row v of Ir. But multiplying the corresponding
column by t−1 will fix this without affecting any other entries. In the
other case, by multiplying non-zero scalar to the column, the y-entry can
be equal to θ(y) without affecting any of the (G|y)-entries. It follows
the result by induction.

3. Representations

Let E = {1, 2, 3, 4, 5, 6} and let I = {I ⊂ E||I| ≤ 3}. Then U3,6 =
(E,I), as was defined in the introduction. By the definition of U3,6, any
of the three columns of the partial representation [I3|D∗] is independent.
Thus all the entries of D∗ should be 1. That is

D∗ = 1
2
3

4 5 6⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦

�

�

�

�

�

�

1

2

3

4

5

6

G(D∗)
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By Theorem 2.2, taking a basis,

�

�

�

�

�

�

1

2

3

4

5

6

the entries of [I3|D1] corresponding to the five entries can be filled
with any non-zero elements of F . If we fill out 1’s to the entries the
matrix [I3|D∗

1 ] which we are looking for is the form of

1 2 3 4 5 6⎡
⎣

1 0 0 a 1 b
0 1 0 1 1 c
0 0 1 1 d 1

⎤
⎦ .

Because any of the three columns of this matrix are independent,

we have the following equations,

1 4 5∣∣∣∣∣∣
1 a 1
0 1 1
0 1 d

∣∣∣∣∣∣
= d− 1 	= 0,

1 4 6∣∣∣∣∣∣
1 a b
0 1 c
0 1 1

∣∣∣∣∣∣
= 1− c 	= 0,

1 5 6∣∣∣∣∣∣
1 1 b
0 1 c
0 d 1

∣∣∣∣∣∣
= 1− cd 	= 0,

2 4 5∣∣∣∣∣∣
0 a 1
1 1 1
0 1 d

∣∣∣∣∣∣
= 1− ad 	= 0,

2 4 6∣∣∣∣∣∣
0 a b
1 1 c
0 1 1

∣∣∣∣∣∣
= b− a 	= 0,

2 5 6∣∣∣∣∣∣
0 1 b
1 1 c
0 d 1

∣∣∣∣∣∣
= bd− 1 	= 0,

3 4 5∣∣∣∣∣∣
0 a 1
0 1 1
1 1 d

∣∣∣∣∣∣
= a− 1 	= 0,

3 4 6∣∣∣∣∣∣
0 a b
0 1 c
0 1 1

∣∣∣∣∣∣
= ac− b 	= 0,

3 5 6∣∣∣∣∣∣
0 1 b
0 1 c
1 d 1

∣∣∣∣∣∣
= c− b 	= 0
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In the field GF (4), if we take b = 1 and a = c = d = w + 1, then
ac = cd = ad = (w + 1)(w + 1) = w, bd = 1(w + 1) = w + 1. Therefore
a matrix which we want to find is

D1 =

∣∣∣∣∣∣
w + 1 1 1
1 1 w + 1
1 w + 1 1

∣∣∣∣∣∣

Thus we have the following property;

Theorem 3.1. U3,6 is F-representable if and only if |F | ≥ 4.

Now if we look at the projective space PG(2, 3) from the vector space
V (3,Z3), we can see that there are 13 points and there exist four hy-
perplanes passing through each point in PG(2, 3). Also each hyperplane
contains four points. Thus a geometric representation of PG(2, 3) is the
following:

• • •

• • •

• • •

•

•

•

•

PG(2, 3)

Outer four points in the diagram are in a hyperplane of PG(2, 3). By
deleting these points, we have the following geometric representation of
AG(2, 3).
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• • •

• • •

• • •

1 2 4

8
3

9

7 6 5

AG(2, 3)

If we take a base {1, 2, 3} in AG(2, 3), we have the following partial
representation of AG(2, 3),

[I3|D∗] =

1 2 3 4 5 6 7 8 9⎡
⎣

1 0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1

⎤
⎦

From

D∗ = 1
2
3

4 5 6 7 8 9⎡
⎣

1 1 1 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1

⎤
⎦

the bipartite graph G(D∗) is the following:

�

�

�

�

�

�

�

�

�

1

2

3

4

5

6

7

8

9

G(D∗)

Let’s take a maximal tree
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Then, by Theorem 2.2, a matrix [I3 | D1] of AG(2, 3) is the following
form:

1 2 3 4 5 6 7 8 9⎡
⎣

1 1 0 1 1 1 1 1 1
0 0 0 1 0 1 b c d
0 1 1 0 a 1 e f g

⎤
⎦

Because the determinants of the circuit columns are zero, we have
the following equations:

5 6 7∣∣∣∣∣∣
1 0 1
0 1 b
a 1 e

∣∣∣∣∣∣
= e− a− b = 0,

3 4 7∣∣∣∣∣∣
1 0 1
0 1 b
a 1 e

∣∣∣∣∣∣
= b− 1 = 0,

4 5 9∣∣∣∣∣∣
1 1 1
1 0 d
0 a g

∣∣∣∣∣∣
= a−ad−g = 0,

2 7 9∣∣∣∣∣∣
0 1 1
1 b d
0 e g

∣∣∣∣∣∣
= e− g = 0,

1 6 9∣∣∣∣∣∣
1 0 1
0 1 d
0 0 g

∣∣∣∣∣∣
= g − d = 0,

1 7 8∣∣∣∣∣∣
1 1 1
0 1 c
0 e f

∣∣∣∣∣∣
= f − ce = 0,

4 6 8∣∣∣∣∣∣
1 0 1
1 1 c
0 1 f

∣∣∣∣∣∣
= f +1− c = 0,

3 8 9∣∣∣∣∣∣
0 1 1
0 c d
1 f g

∣∣∣∣∣∣
= d− c = 0.

By the equations, we have c = d = g = e.
If we denote these same number by x, we have the following equation:
f − x2 = 0, f + 1− x = 0
From these equations, we have x2 − x+ 1 = 0.
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Because
(w + 1)2 − (w + 1) + 1 = w − (w + 1) + 1 = 0,
x2 − x+ 1 = 0 has a solution w + 1 in GF (4). If we take f = a = w,

the matrix

⎡
⎣
1 0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 w + 1 w + 1
0 0 1 0 w 1 w + 1 w w + 1

⎤
⎦

is a representations of AG(2, 3) over GF (4).
Furthermore we proved the following theorem

Theorem 3.2. AG(2, 3) is F-representable if and only if F has a root
of the equation x2 − x+ 1 = 0.
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