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IRREDUCIBLE POLYNOMIALS WITH REDUCIBLE

COMPOSITIONS

Eunmi Choi

Abstract. In this paper we investigate criteria that for an irre-
ducible monic quadratic polynomial f(x) ∈ Q[x], f ◦ g is reducible
over Q for an irreducible polynomial g(x) ∈ Q[x]. Odoni intrigued
the discussion about an explicit form of irreducible polynomials
f(x) such that f ◦ f is reducible. We construct a system of infin-
itely many such polynomials.

1. Introduction

For a field K with char.0, let f(x) and g(x) be in K[x]. Then f ◦ g is
irreducible in K[x] if and only if f(x) is irreducible in K[x] and g(x)−α
is irreducible in K(α)[x] for every root α of f(x). This is a well known
property for the irreducibility of f ◦ g due to Capelli (refer to [4], [2]).
In particular if f(x) = x2− bx+ c is a monic quadratic polynomial then
the next lemma follows immediately.

Lemma 1. If f(x) = x2− bx+ c is irreducible in K[x] with discrimi-
nant ∆, then for any polynomial g(x) ∈ K[x], f ◦g is reducible over K if

and only if g(x)−α = g(x)− b
2−
√

∆
4 is reducible over K(α) = K(

√
∆
4 ).

The purpose of this paper is to construct irreducible quadratic poly-
nomials f(x) = x2 − bx+ c ∈ Q[x] explicitly such that the composition
of itself is reducible. We also investigate irreducible polynomials f and
g while f ◦ g is reducible.

Throughout the paper, without mentioned otherwise, we keep nota-
tions that f(x) = x2 − bx+ c, α is a root of f(x) in some splitting field,
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∆ is the discriminant of f and ∆0 = ∆
4 . Then α = 1

2(b +
√
b2 − 4c) =

b
2 +

√
∆
2 = b

2 +
√

∆0.

2. Irreducible polynomial with reducible iterate

In [3], it is given as an explicit example that f(x) = x2 + 10x+ 17 is
irreducible over Q but f ◦ f is reducible over Q. In this section we shall
develop certain criterion in order to construct an infinite series of such
polynomials.

Theorem 2. Let f(x) = x2− bx+ c ∈ Q[x] (b 6= 0) be an irreducible

monic polynomial. Let U =
√

(∆ + 2b)2 − 4∆.

If c = 1
4

(
b2 + 2b− 2±

√
−8b+ 4 + U2

)
and 1

2 (∆ + 2b± U) ∈ Q2 then

f ◦ f is reducible.

Proof. Due to Lemma 1, f ◦ f is reducible if and only if f(x) − α
is reducible over Q(α), i.e., the discriminant ∆(f(x) − α) belongs to

Q(α)2 = Q(
√

∆)2. Moreover since f(x)− α = x2 − bx+ c− b
2 −

√
∆
2 ,

∆(f(x)− α) = b2 − 4c+ 2b+ 2
√

∆ = ∆ + 2b+ 2
√

∆ ∈ Q(
√

∆)2

so we may write ∆ + 2b+ 2
√

∆ = (s+ t
√

∆)2 for some s, t ∈ Q. Then

∆ + 2b = s2 + t2∆ and st = 1.

Hence t = 1
s and ∆ + 2b = s2 + ∆

s2
. Thus we have a quartic polynomial

on s that s4 − (∆ + 2b)s2 + ∆ = 0 so

s2 =
1

2

(
∆ + 2b±

√
(∆ + 2b)2 − 4∆

)
.

If (∆+2b)2−4∆ = 0 then ∆ =
(

∆+2b
2

)2
. If ∆+2b = 0 then 0 = ∆ = −2b,

it contradicts to b 6= 0. Hence ∆ + 2b 6= 0 so ∆ =
(

∆+2b
2

)2 6= 0 yields f
is reducible, contradict. Thus we may have

(∆ + 2b)2 − 4∆ = U2 and s2 =
1

2
(∆ + 2b± U)

for some 0 6= U ∈ Q. Moreover since

U2 = (∆ + 2b)2 − 4∆ = 16c2 − 8(b2 + 2b− 2)c+ (b4 + 4b3),

we have c2 − 1
2(b2 + 2b− 2)c+ 1

16(b4 + 4b3 − U2) = 0, so

c =
1

2
(
1

2
(b2 + 2b− 2)±

√
1

4
(b2 + 2b− 2)2 − 1

4
(b4 + 4b3 − U2))
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=
1

4
(b2 + 2b− 2±

√
−8b+ 4 + U2)

where −8b+ 4 + U2 ∈ Q2. Thus by taking c as above we can construct
f(x) such that f ◦ f is reducible. �

The polynomial f(x) = x2 + 10x + 17 in [3] meets the necessary
conditions in Theorem 2. In fact since ∆(f) = 25,

U2 = (∆ + 2b)2 − 4∆ = 24 and s2 =
1

2
(∆ + 2b− U) = 22

are squares of integers. We note that here we take s2 = 1
2(∆ + 2b− U)

instead of s2 = 1
2(∆+2b+U). Hence f ◦f is should be reducible. Indeed

f ◦f(x) = x4 +20x3 +144x2 +440x+476 = (x2 +12x+34)(x2 +8x+14).

Due to Theorem 2, we are able to construct infinitely many irreducible
polynomials f(x) that its iterate f ◦f is reducible. We will find a system
of such polynomials precisely in two cases that −8b + 4 + U2 = 0 or
−8b+ 4 + U2 ∈ Q2.

Example 1. Assume −8b+4+U2 = 0. Then c = 1
4(b2 +2b−2). Since

U2 = 8b− 4 > 0, it should be b > 2. Thus for the b, c, U, s ∈ Q with

b > 2, U2 = 8b− 4, s2 =
1

2
(∆ + 2b± U) ,

we can construct a family of polynomials f(x) = x2 − bx + c which
are irreducible but the 2nd iterate are reducible. Indeed we have some
examples as follows:

b > 2 8b− 4 = U2 c = b2+2b−2
4 ∆ = −2b+ 2 ∆+2b±U

2 = s2

(1) 5 62 33/4 −8 22

(2) 113 302 12993/4 −224 42

(3) 613 702 376993/4 −1224 62

(4) 1985 1262 3944193/4 −3968 82

· · ·

In the case (1), let b = 5. Then c = 33/4 so f(x) = x2 − 5x + 33
4

is irreducible since ∆ = −8 < 0, but the composition f ◦ f is reducible
that
f ◦ f(x) = x4 − 10x3 + 73

2 x
2 − 115

2 x + 561
16 = 1

16(4x2 − 12x + 11)(4x2 −
28x+ 51).
Similarly in (2) by taking b = 113, we have f(x) = x2 − 113x + 12993

4
which is irreducible but reducible composition
f ◦ f(x) = x4 − 226x3 + 38305

2 x2 − 1442671
2 x+ 162997185

16
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= 1
16(4x2 − 463x+ 11895)(4x2 − 468x+ 13703).

(3) shows that f(x) = x2 − 613x+ 376993
4 is irreducible and

f ◦ f(x) = x4 − 1226x3 + 1127305
2 x2 − 230345171

2 x+ 141200843185
16

= 1
16(4x2 − 2428x+ 368483)(4x2 − 2476x+ 383195).

And in (4), f(x) = x2 − 1985x+ 3944193
4 is irreducible and

f ◦ f(x) = 1
16(4x2 − 7908x+ 3908591)(4x2 − 7972x+ 3972111).

Besides these examples we can construct infinitely many polynomials
satisfying the conditions on c and U , which are irreducible with reducible
2nd iterate.

Example 2. Assume −8b + 4 + U2 = V 2 for some V ∈ Q. Then
8b− 4 = (U + V )(U − V ) > 0 and c = 1

4(b2 + 2b− 2 + V ). Thus

s2 =
1

2
(∆ + 2b+ U) =

1

2

(
b2 − 4c+ 2b+ U

)
=

1

2
(2 + U − V ) ,

so U − V = 2(s2 − 1). Now for c, U , V satisfying

8b− 4 = (U + V )(U − V ), U − V = 2(s2 − 1),

c =
1

4
(b2 + 2b− 2 + V ), s2 =

1

2
(∆ + 2b+ U) and − 2b+ 2 < V,

we can construct series of f(x) = x2 − bx+ c which are irreducible but
the 2nd iterate are reducible.
b > 2 8b− 4 = (U − V )(U + V ) U − V = 2(s2 − 1) s2 U + V U V

(1) 8 (22)(3)(5) (2)(3) = 2(22 − 1) 22 10 8 2
(2) 11 (22)(3)(7) (2)(3) = 2(22 − 1) 22 14 10 4
(3) 14 (22)(33) (2)(3) = 2(22 − 1) 22 18 12 6
(4) 17 (22)(3)(11) (2)(3) = 2(22 − 1) 22 22 14 8
(5) 20 (22)(3)(13) (2)(3) = 2(22 − 1) 22 26 16 10
· · ·

In case (1), let b = 8. Then c = (b2 + 2b − 2 + V )/4 = 20 and
∆ = −16 < 0, so

s2 − 1

2
(∆ + 2b+ U) = 22 − 1

2
(−16 + 16 + 8) = 0

as is expected. Thus f(x) = x2 − 8x+ 20 is irreducible but
f ◦f(x) = x4−16x3 +96x2−256x+260 = (x2−10x+26)(x2−6x+10)
is reducible. In (2), let b = 11. Then c = 145/4 and ∆ = −24 < 0, so

s2 − 1

2
(∆ + 2b± U) = 22 − 1

2
(−24 + 22 + 10) = 0

as is expected. Hence we have an irreducible f(x) = x2 − 11x + 145/4
with



Irreducible polynomials with reducible compositions 359

f ◦f(x) = x4−22x3 + 365
2 x2−13 = 1

16(4x2−52x+175)(4x2−36x+87).
Similarly in (3), b = 14, c = 57 and ∆ = −32 < 0, so

s2 − 1

2
(∆ + 2b± U) = 22 − 1

2
(−32 + 28 + 12) = 0.

So we have an irreducible polynomial f(x) = x2 − 14x+ 57 such that
f◦f(x) = x4−28x3+296x2−1400x+2508 = (x2−12x+38)(x2−16x+66).
And in case (4), b = 17, c = 329/4 and ∆ = −40 < 0, so

s2 − 1

2
(∆ + 2b± U) = 22 − 1

2
(−40 + 34 + 14) = 0,

thus f(x) = x2 − 17x+ 329/4 is an irreducible polynomial such that

f ◦ f(x) =
1

16
(4x2 − 60x+ 235)(4x2 − 76x+ 371).

For (5), b = 20, c = 112 and ∆ = −48 < 0, so

s2 − 1

2
(∆ + 2b± U) = 22 − 1

2
(−48 + 40 + 16) = 0,

and f(x) = x2 − 20x+ 112 is an irreducible polynomial such that

f ◦ f(x) = (x2 − 22x+ 124)(x2 − 18x+ 84).

Therefore besides the polynomial x2 + 10x+ 17 in [3], we can construct
infinitely many quadratic irreducible polynomials whose 2nd iterate are
reducible.

3. Irreducible polynomial with reducible composition

This section is devoted to investigate the nature of irreducible qua-
dratic polynomial f such that the composition f ◦ g is reducible while
g(x) is irreducible of any degree. Let f(x) = ax2 − bx + c with a root
α = b

2a +
√

∆0 for ∆0 = ∆
4a2

.

Lemma 3. Let f(x) = ax2 − bx + c be irreducible. Then for any
g(x) ∈ K[x], f ◦ g is reducible over K if and only if{

g(x)− b
2a = A(x)U(x) + ∆0B(x)V (x)

1 = A(x)V (x) +B(x)U(x)

for some polynomials A(x), B(x), U(x), V (x) in K[x].



360 Eunmi Choi

Proof. Due to Lemma 1, f ◦ g is reducible over K if and only if
g(x)−α = g(x)− b

2a −
√

∆0 is reducible over K(
√

∆0). That is, we may
write

g(x)− b

2a
−
√

∆0 = (A(x)−
√

∆0 B(x))(U(x)−
√

∆0 V (x))

for some polynomials A(x), B(x), U(x), V (x) in K[x]. This is equivalent
to

g(x)− b

2a
= A(x)U(x)+∆0B(x)V (x) and 1 = A(x)V (x)+B(x)U(x). �

Theorem 4. Let f(x) = ax2 − bx + c ∈ K[x] be an irreducible
polynomial. Then there are infinitely many g(x) ∈ K[x] such that f ◦ g
is reducible over K[x].

Proof. Let A(x) and B(x) in K[x] be any two relatively prime
polynomials. Then A(x)V (x) +B(x)U(x) = 1 for U(x), V (x) ∈ K[x].

For ∆ = b2− 4ac and ∆0 = ∆
4a2

, define a polynomial g0(x) ∈ K[x] by

g0(x) = A(x)U(x) + ∆0B(x)V (x) +
b

2a
,

and for any λ(x) ∈ K[x] we let

g(x) = g0(x) + λ(x)
(
A(x)2 −∆0B(x)2

)
.

Then with a root α = b
2a +

√
∆0 of f(x), we have

g0(x)− α = g0(x)− b

2a
−
√

∆0

= A(x)U(x) + ∆0B(x)V (x)−
√

∆0(A(x)V (x) +B(x)U(x))

= (A(x)−
√

∆0B(x))(U(x)−
√

∆0V (x))

because A(x)V (x) +B(x)U(x) = 1. And we also have

g(x)− α = g0(x) + λ(x)(A(x)2 −∆0B(x)2)− α
= g0(x)− α+ λ(x)(A(x) +

√
∆0B(x))(A(x)−

√
∆0B(x))

= (A(x)−
√

∆0B(x))(U(x)−
√

∆0V (x))

+λ(x)(A(x) +
√

∆0B(x))(A(x)−
√

∆0B(x))

= (A(x)−
√

∆0B(x))[(U(x) + λ(x)A(x))−
√

∆0(V (x)− λ(x)B(x))]

This shows that g0(x) − α and g(x) − α are reducible over K(α), thus
due to Capelli, both f ◦ g0 and f ◦ g are reducible in K with infinitely
many polynomials λ(x). �

Refer to [1] for Theorem 4. We shall construct examples of irreducible
polynomials f and g such that their composition f ◦ g is reducible.
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Example 3. Let f(x) = x2 − x+ 1. Then ∆0 = −3
4 , α = 1

2(1 + i
√

3),

so f(x) is irreducible over Q. Let A(x) = x2 +1 and B(x) = x−1. Then
it is easy to see that gcd(A(x), B(x)) = 1 and

A(x)V (x) +B(x)U(x) = 1 with V (x) =
1

2
, U(x) = −1

2
(x+ 1).

Let

g0(x) = A(x)U(x) + ∆0B(x)V (x) +
b

2

Then

g0(x) =
1

2
(−x3 − x2 − 7

4
x+

3

4
)

is irreducible while

g0(x)− α = −1

8
(2x2 + 2 + i

√
3(−x+ 1))(2x+ 2 + i

√
3)

= (A−
√

∆0B)(U −
√

∆0V )

is reducible. Now take any polynomial λ(x), for instance, λ(x) = x+ 2.
Let

g(x) = g0(x) + λ(x)
(
A(x)2 −∆0B(x)2

)
.

Then

g(x) = x5 + 2x4 +
9

4
x3 +

7

2
x2 − 17

8
x+

31

8

is irreducible, while
g(x)−α = 1

8(2x2+2+i
√

3(−x+1))(4x3+8x2+2x+6+i
√

3(2x2+2x−5))

= (A−
√

∆0B)[(U −
√

∆0V ) + λ(A+
√

∆0B)]
is reducible. Hence, the reducibility of g − α implies f ◦ g is reducible.

Example 4. With the same irreducible polynomial f(x) = x2 − x+ 1
as in Example 3, we choose a different set of relatively prime polynomials
A(x) = x2 + x+ 1 and B(x) = x− 2. Clearly gcd(A(x), B(x)) = 1 and

A(x)V (x) +B(x)U(x) = 1 with V (x) =
1

7
, U(x) = −1

7
(x+ 3).

Since ∆0 = −3
4 and α = 1

2(1 + i
√

3),

g0(x) = A(x)U(x) + ∆0B(x)V (x) +
b

2
=

1

2
(−x3 − 4x2 − 19

4
x+ 2)

is irreducible while

g0(x)− α = − 1

28
(2x2 + 2x+ 2 + i

√
3(−x+ 2))(2x+ 6 + i

√
3)
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is reducible. Take any polynomial λ(x), for instance, λ(x) = x2 + 2.
Then

g(x) = x6 + 2x5 +
23

4
x4 +

20

7
x3 +

153

14
x2 − 75

28
x+

58

7

while
g(x)− α = 1

28(2x2 + 2x+ i
√

3(−x+ 2))

· (14x4 + 14x3 + 42x2 + 26x+ 22 + i
√

3(7x3 − 14x2 + 14x− 29))
is reducible. Hence f ◦ g is reducible.

We consider another example that involves different polynomials for
h(x).

Example 5. Let f(x) = x2 − 2x + 3. Then f(x) is irreducible over
Q with ∆0 = −2 and root α = 1 + i

√
2. Let A(x) = x2 + x + 1 and

B(x) = x2 + 1. Then gcd(A(x), B(x)) = 1 and

A(x)V (x) +B(x)U(x) = 1 with V (x) = −x, U(x) = 1 + x.

Thus

g0(x) = A(x)U(x) + ∆0B(x)V (x) +
b

2
= 3x3 + 2x2 + 4x+ 2

while

g0(x)− α =
1

3
(3x2 + x+ 3 + i

√
2x)(3x+ 1− i

√
2)

reducible. Now take any λ(x), for example a cubic λ(x) = x3 + 1. Then

g(x) = 3x7 + 2x6 + 7x5 + 5x4 + 8x3 + 9x2 + 6x+ 5

while
g(x)− α = 1

3(3x2 + x+ 3 + i
√

2x)

· (3x5 + x4 + 3x3 + 3x2 + 4x+ 4 + i
√

2(−x4 − x− 1))
reducible. Hence f ◦ g is reducible.

This shows that, for a given irreducible quadratic polynomial f(x), it
can be constructed infinitely many polynomials g(x) that makes f ◦ g is
reducible, by taking any two relatively prime polynomials. The next the-
orem provides more explicit criteria for the irreducibility of composition
polynomials when g(x) is quadratic.

Theorem 5. Let f(x) = x2−bx+c irreducible and g(x) = x2+Ax+B
be

A = t0

√
− t

s0
+ s

√
−s0

t
, B = st0 + ts0∆0 +

b

2
(s, t, s0, t0 ∈ Z)

with gcd(s, t) = 1 and ss0 + tt0 = 1. If − t
s0
∈ Q2 then f ◦ g is reducible

over Q.
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Proof. Let α = b
2 +
√

∆0 with ∆0 = b2−4c
4 . Since f(x) is irreducible,

f ◦ g is reducible if and only if g(x)− α = g(x)− b
2 −
√

∆0 is reducible

over Q(α) = Q(
√

∆0) by Lemma 1. Since g(x) is of degree 2, we may
factorize g(x)− α as

g(x)− b

2
−
√

∆0 =
(

(rx+ s)− t
√

∆0

)(
(ux+ v)− w

√
∆0

)
= rux2 + (vr + su)x+ (sv + tw∆0)−

√
∆0 ((rw + tu)x+ (sw + tv))

for some r, s, t, u, v, w ∈ Q, (r, u 6= 0). Thus we have

g(x)− b

2
= rux2 + (vr + su)x+ (sv + tw∆0)

and rw+ tu = 0 and sw+ tv = 1. Without loss of generality we assume
g(x) is monic, so u = 1

r with r 6= 0. Hence from rw + tu = 0, we have

r2w + t = 0, i.e., r =
√
− t

w with − t
w ∈ Q2. Moreover since sw + tv = 1

we may consider gcd(s, t) = 1 for s, t, v, w ∈ Z.

Now let g(x) = x2 +Ax+B such that

A = t0

√
− t

s0
+ s

√
−s0

t
, B = st0 + ts0∆0 +

b

2

such that gcd(s, t) = 1 with ss0 + tt0 = 1 for s0, t0 ∈ Z. Then g(x) ∈
Q[x]. If we set r =

√
− t

s0
∈ Q then 0 = s0r

2 + t so

0 = s0r +
t

r
= s0

√
− t

s0
+ t

√
−s0

t
.

Hence with ss0 + tt0 = 1 we have

(

√
− t

s0
x+ s− t

√
∆0)(

√
−s0

t
x+ t0 − s0

√
∆0)

= x2 + (s

√
−s0

t
+ t0

√
− t

s0
)x+ st0 + s0t∆0

−
√

∆0(−(s0

√
− t

s0
+ t

√
−s0

t
)x+ ss0 + tt0)

= x2 + (t0

√
− t

s0
+ s

√
−s0

t
)x+ (st0 + ts0∆0) +

b

2
− b

2
−
√

∆0

= g(x)− b

2
−
√

∆0 = g(x)− α.

Thus g(x)− α is reducible over Q(α), so f ◦ g is reducible over Q. �
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Example 6. Choose any s, t such that gcd(s, t) = 1 satisfying ss0 +
tt0 = 1 and − t

s0
= r2 ∈ Q2.

f(x) s t s0 t0 r =
√
− t

s0
∆ ∆0 α

(1) x2 − x+ 1 3 4 −1 1 2 −3 −3
4

1
2 +

√
−3

4

(2) x2 − x+ 1 15 16 −1 1 4 −3 −3
4

1
2 +

√
−3

4

(3) x2 − 2x− 1 3 4 −1 1 2 8 2 1 +
√

2

(4) x2 − 2x− 1 8 9 −1 1 3 8 2 1 +
√

2
· · ·

In the first two cases we have the same polynomial f(x) = x2−x+ 1
which is irreducible. In (1), let s = 3 and t = 4. Then

g(x) = x2 + (rt0 +
s

r
)x+ (st0 + ts0∆0) +

b

2
= x2 +

7

2
x+

13

2

is irreducible. And of course

g(x)− α = ((2x+ 3)− 4

√
−3

4
)((

1

2
x+ 1) +

√
−3

4
)

is reducible. Moreover
f ◦ g(x) = x4 + 7x3 + 97

4 x
2 + 42x+ 147

4 = 1
4(4x2 + 12x+ 21)(x2 + 4x+ 7)

is reducible. In (2), with the same f(x) choose s = 15 and t = 16. Then

g(x) = x2 +
31

4
x+

55

2

is irreducible but

f ◦ g(x) =
1

16
(16x2 + 120x+ 417)(x2 + 8x+ 28)

is reducible. In cases (3) and (4), we take another irreducible polynomial
f(x) = x2−2x−1 with ∆0 = 2 and α = 1+

√
2. When s = 3 and t = 4,

we have

g(x) = x2 +
7

2
x− 4

is irreducible while g(x)− α = ((2x+ 3)− 4
√

2)((1
2x+ 1) +

√
2) and

f ◦ g(x) =
1

4
(4x2 + 12x− 23)(x2 + 4x− 4)

are reducible. On the other hand, by choosing s = 8 and t = 9, we have

g(x) = x2 +
17

3
x− 9



Irreducible polynomials with reducible compositions 365

is irreducible while f◦g(x) = 1
9(x2+6x−9)(9x2+48x−98) is reducible. It

concludes that, for a given irreducible polynomial f(x) we can construct
infinitely many g(x) explicitly such that f ◦ g is reducible.

4. The t-th iterate of polynomials

The irreducibility of 2nd iterate is based on the Capelli theorem.

Lemma 6. [4] g ◦ f is irreducible in K[x] if and only if g(x) is irre-
ducible in K[x] and f(x) − β is irreducible in K(β)[x] for every root β
of g(x).

This can be extended to any t-th iterate so that we may be able to
construct polynomials explicitly.

Theorem 7. Let g(x) ∈ K[x] be irreducible. For any f(x) ∈ K[x],
g ◦ ft+1 is irreducible in K[x] if and only if f(x)− βt and f(x)− fj(βt)
(0 ≤ j ≤ t) are irreducible in K(βt)[x] for all roots βt of g ◦ ft(x).

Proof. The case of t = 0 is the Lemma 6. When t = 1, g ◦ f2 is irre-
ducible over K ⇔ g ◦f is irreducible over K and f(x)−β1 is irreducible
over K(β1) for every root β1 of g ◦ f(x) ⇔ f(x) − β is irreducible over
K(β) and f(x) − β1 is irreducible over K(β1) for every roots β of g(x)
and β1 of g ◦ f(x).

For every root β1 of g ◦ f , f(β1) is a zero of g(x). Hence if we
let β = f(β1), then g ◦ f2 is irreducible if and only if f(x) − f(β1) is
irreducible over K(f(β1)) and f(x) − β1 is irreducible over K(β1) for
every root β1 of g ◦ f(x). But since K(f(β1)) = f(K(β1)) = K(β1),
g ◦ f2 is irreducible if and only if both f(x) − f(β1) and f(x) − β1 are
irreducible over K(β1) for every root β1 of g ◦ f(x).

Similarly g ◦ f3 is irreducible over K if and only if g ◦ f2 is irreducible
over K and f(x) − β2 is irreducible over K(β2) for every root β2 of
g ◦ f2(x). This is equivalent to that f(x) − f(β1) and f(x) − β1 are
irreducible over K(β1) and f(x)− β2 is irreducible over K(β2) for every
roots β1 of g◦f(x) and β2 of g◦f2(x). But every root β2 of g◦f2 satisfies
that f(β2) is a zero of g ◦ f(x). Hence if we let β1 = f(β2) then g ◦ f3 if
irreducible if and only if f(x)− f2(β2) and f(x)− f(β2) are irreducible
over K(f(β2)) and f(x)− β2 is irreducible over K(β2) for every root β2

of g ◦ f2(x), hence it is so if and only if f(x)− f2(β2), f(x)− f(β2) and
f(x)− β2 are irreducible over K(β2) for every root β2 of g ◦ f2(x).

Therefore g ◦ ft+1 is irreducible over K if and only if f(x) − fj(βt)
(1 ≤ j ≤ t) and f(x)− βt are irreducible over K(βt) for every root βt of
g ◦ ft(x). �
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