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EXTREME PRESERVERS OF FUZZY MATRIX PAIRS

DERIVED FROM ZERO-TERM RANK INEQUALITIES

Seok-Zun Song and Eun A Park

Abstract. In this paper, we construct the sets of fuzzy matrix
pairs. These sets are naturally occurred at the extreme cases for the
zero-term rank inequalities derived from the multiplication of fuzzy
matrix pairs. We characterize the linear operators that preserve
these extreme sets of fuzzy matrix pairs.

1. Introduction and Preliminaries

The linear preserver problems are one of the most active subjects in
matrix theory during the past one hundred years, which concern the
characterizations of linear operators on matrix spaces that leave certain
functions, subsets, relations, etc., invariant. For survey of these types of
problems, we refer to the article of Song([7]) and the papers in [6]. The
specified frame of problems is of interest both for matrices with entries
from a field and for matrices with entries from an arbitrary semiring
such as Boolean algebra, nonnegative integers, and fuzzy semiring. It is
necessary to note that there are several rank functions over a semiring
that are analogues of the classical function of the matrix rank over a field.
Detailed research and self-contained information about rank functions
over semirings can be found in [1] and [7].

There are some results on the inequalities for the rank function of
matrices([1] - [4]). Beasley and Guterman ([1]) investigated the rank in-
equalities of matrices over semirings. And they characterized the equal-
ity cases for some rank inequalities in [2]. The investigation of linear
preserver problems of extreme cases of the rank inequalities of matrices
over fields was obtained in [4]. The structure of matrix varieties which
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arise as extremal cases in the inequalities is far from being understood
over fields, as well as semirings. A usual way to generate elements of
such a variety is to find a matrix pairs which belongs to it and to act
on this set by various linear operators that preserve this variety. Song
and his colleagues ([4]) characterized the linear operators that preserve
the extreme cases of column rank inequalities over semirings. There are
some results on the linear operators that preserve zero-term rank([5]).

In this paper, we characterize linear operators that preserve the sets
of matrix pairs which satisfy extreme cases for the zero term rank in-
equalities for the matrix multiplications over fuzzy semiring.

A semiring S consists of a set S and two binary operations, addition
and multiplication, such that:

• S is an Abelian monoid under addition (identity denoted by 0);
• S is a semigroup under multiplication (identity, if any, denoted by

1);
• multiplication is distributive over addition on both sides;
• s0 = 0s = 0 for all s ∈ S.

A semiring is called antinegative if the zero element is the only ele-
ment with an additive inverse.

Let R be the field of reals, let F={α ∈ R | 0 ≤ α ≤ 1} denote a
subset of reals. Define a+ b = max{a, b} and a · b = min{a, b} for all a,b
in F . Then (F ,+, ·) is called a fuzzy semiring.

It is straightforward to see that the fuzzy semiring is commutative
and antinegative.

Let Mm,n(F) denote the set of all m × n matrices with entries in
a fuzzy semiring F . If m = n, we use the notation Mn(F) instead of
Mn,n(F). We call a matrix in Mm,n(F) as a fuzzy matrix.

Throughout we assume that m ≤ n for any m×n matrix. The matrix
In is the n × n identity matrix, Jm,n is the m × n matrix of all ones,
Om,n is the m× n zero matrix. We omit the subscripts when the order
is obvious from the context and we write I, J , and O, respectively. The
matrix Ei,j , called a cell, denotes the matrix with exactly one nonzero
entry, that being a one in the (i, j) entry. Let Ri denote the matrix whose
ith row is all ones and is zero elsewhere, and Cj denote the matrix whose

jth column is all ones and is zero elsewhere. A line of a matrix A is a
row or a column of A.



Extreme preservers of fuzzy matrix pairs 303

A matrix A ∈Mm,n(S) has zero-term rank k (denoted by z(A) = k)
if the least number of lines needed to include all zero elements of A is
equal to k.

Example 1.1. Let

A =

 1
2

2
3

3
4

2
3 0 4

5
1
2

3
4

2
3

 , B =

 1
2 0 1
2
3

3
4 0

0 0 0

 .

Then z(A) = 1 and z(B) = 3 for A,B ∈M3(F).

Let F be a fuzzy semiring. An operator T : Mm,n(F) → Mm,n(F)
is called linear if T (X + Y ) = T (X) + T (Y ) and T (αX) = αT (X) for
all X,Y ∈Mm,n(F), α ∈ F .

We say an operator, T , preserves a set P if X ∈ P implies that
T (X) ∈ P, or, if (X,Y ) ∈ P implies that (T (X), T (Y )) ∈ P when P is
a set of ordered pairs.

The matrix X ◦ Y denotes the Hadamard or Schur product , i.e., the
(i, j) entry of X ◦ Y is xi,jyi,j .

An operator T is called a (P,Q)-operator if there exist permutation
matrices P and Q such that T (X) = PXQ for all X ∈ Mm,n(F), or, if
m = n, T (X) = PXtQ for all X ∈Mm,n(F).

It was shown in [2] and [4] that linear preservers for extremal cases
of classical matrix inequalities over fields are types of (U, V )-operators
where U and V are arbitrary invertible matrices. On the other side,
linear preservers for various rank functions over semirings have been
the object of much study during the last years, see for example [6], in
particular zero-term rank was investigated in the last few years, see for
example [5]. Also the fuzzy matrix has been the object of much research,
see for examples [6] and [8].

We say that the matrix A dominates the matrix B if and only if
bi,j 6= 0 implies that ai,j 6= 0, and we write A ≥ B or B ≤ A.

If A and B are matrices and A ≥ B we let A\B denote the matrix C
where

ci,j =

{
0 if bi,j 6= 0;

ai,j otherwise.
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2. Zero-term rank inequality of fuzzy matrix multiplication

In this section, we obtain inequalities for the zero-term rank of matrix
multiplication over fuzzy semiring. We also show that these inequalities
are exact and best possible.

If S is a field then there is a usual rank function ρ(A) for any matrix
A ∈Mm,n(S). The behavior of the usual rank function ρ with respect to
matrix multiplication is given by the following inequalities: Sylvester’s
law [2]:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)},
where A and B are conformal matrices with coefficients from a field.

But for the zero-term rank, the Sylvester’s law does not hold. Con-
sider the following example:

Example 2.1. For n > 2, we take A = C1, B = R1 in Mn(F).
Then we have z(A) + z(B) − n = z(C1) + z(R1) − n = n − 2, but
z(AB) = z(C1R1) = 0. This pair(A,B) breaks the left inequality of the
Sylvester’s law for zero-term rank. Moreover, for

E =

 1 1 1
1 1 1
0 0 0

 , F =

 1 1 0
1 1 0
1 1 0

 ,

we have z(EF ) = z(

 1 1 0
1 1 0
0 0 0

) = 2 but min{z(E), z(F )} = 1. This

pair(E,F) breaks the right inequality of the Sylvester’s law for zero-term
rank.

Proposition 2.2. Let F be a fuzzy semiring. For A ∈ Mm,n(F),
B ∈Mn,k(F) one has that

0 ≤ z(AB) ≤ min{z(A) + z(B), k,m}.
These bounds are exact and the best possible for n > 2.

Proof. The lower bound follows from the definition of the zero-term
rank function. In order to show that this bound is exact and the best
possible, let us consider the family of matrices: for each pair (r, s),
0 ≤ r ≤ min{m,n}, 0 ≤ s ≤ min{k, n}, we take Ar = J\(Σr

i=1Ei,i),

Bs = J\(Σs
i=1Ei,i+1) if s < min{k, n} and Bs = J\(Σs−1

i=1Ei,i+1 +Es,1) if
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s = min{k, n}. Then z(Ar) = r, z(Bs) = s by definition and if n > 2 then
ArBs does not have zero elements by antinegativity. Thus z(ArBs) = 0.

The upper bound follows directly from the definition of zero-term
rank and from the antinegativity of F . In order to show that this bound
is exact and the best possible, let us consider the family of matrices:
for each pair (r, s), 0 ≤ r ≤ min{m,n}, 0 ≤ s ≤ min{k, n}, we take
Ar = J\(Σr

i=1Ri) and Bs = J\(Σs
i=1Ci). Then ArBs has zero elements

in the first r rows and first s columns, which implies that z(ArBs) ≤
z(Ar) + z(Bs).

3. Extreme preservers of fuzzy matrix pairs derived from
zero-term rank inequalities

In this section, we construct the sets of matrix pairs that arise as the
extremal cases in the inequalities of zero-term rank of matrix multipli-
cations shown in Proposition 2.2. And we obtain characterizations of
the linear operators that preserve these extreme sets of matrix pairs.

Lemma 3.1. Let F be a fuzzy semiring, T :Mm,n(F)→Mm,n(F)
be an operator which maps lines to lines and is defined by T (Ei,j) =
Eσ(i,j), where σ is a permutation on the set {(i, j) | i = 1, 2, · · · ,m; j =
1, 2, · · · , n}. Then T is a (P,Q)-operator.

Proof. Since no combination of u rows and v columns can dominate J
where u+v = m unless v = 0 (or if m = n, if u = 0) we have that either
the image of each row is a row and the image of each column is a column,
or m = n and the image of each row is a column and the image of each
column is a row. Thus, there are permutation matrices P and Q such
that T (Ri) ≤ PRiQ and T (Cj) ≤ PCjQ or, if m = n, T (Ri) ≤ P (Ri)

tQ
and T (Cj) ≤ P (Cj)

tQ. Since each cell lies in the intersection of a row
and a column and T maps nonzero cells to nonzero (weighted) cells,
it follows that T (Ei,j) = PEi,jQ, or, if m = n, T (Ei,j) = PEj,iQ =
P (Ei,j)

tQ. Thus T is a (P,Q)-operator.

Lemma 3.2. Let T :Mm,n(F)→Mm,n(F) be a (P,Q)− operator.
Then T preserves all zero-term rank.
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Proof. Let π be a permutation corresponding P , µ be a permutation
corresponding Q.

Let z(A) = r with A ∈ Mm,n(F ). Then there are r lines such that
those r lines cover all zero entries of A, say r1, r2, · · · , rs, c1, c2, · · · ,
ct with s + t = r, covers all zero entries of A. Then all the zero entries
of PAQ are covered by rπ(1), rπ(2), · · · , rπ(s) and cµ(1), cµ(2), · · · , cµ(t)
with s+ t = r.

Thus z(PAQ) = r and hence z(T (A)) = r. Therefore T preserves
zero-term rank r, and hence T preserves all zero-term rank.

Theorem 3.3. Let F be a fuzzy semiring and T : Mm,n(F) →
Mm,n(F) be a linear operator. Then the following are equivalent:

1. T is bijective.
2. T is surjective.
3. There exists a permutation σ on {(i, j) | i = 1, 2, · · · ,m; j =

1, 2, · · · , n} such that T (Ei,j) = Eσ(i,j).

Proof. That 1) implies 2) and 3) implies 1) is straightforward. We
now show that 2) implies 3).

We assume that T is surjective. Then, for any pair (i, j), there exists
some X such that T (X) = Ei,j . Clearly X 6= O by the linearity of T .
Thus there is a pair of indexes (r, s) such that X = xr,sEr,s +X ′ where
(r, s) entry of X ′ is zero and the following two conditions are satisfied:
xr,s 6= 0 and T (Er,s) 6= O. Indeed, if in the contrary for all pairs (r, s)
either xr,s = 0 or T (Er,s) = O then T (X) = O which contradicts with
the assumption T (X) = Ei,j 6= O. Hence

T (xr,sEr,s) ≤ T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j .

Thus xr,sT (Er,s) = T (xr,sEr,s) ≤ Ei,j , and hence T (xr,sEr,s) = αEi,j for
a certain α ∈ F . That is, there is some permutaion σ on {(i, j) | i =
1, 2, · · · ,m; j = 1, 2, · · · , n} such that for some scalars bi,j , T (Ei,j) =
bi,jEσ(i,j). We now only need show that the bi,j are all units. Since T
is surjective and T (Er,s) 6≤ Eσ(i,j) for (r, s) 6= (i, j), there is some α
such that T (αEi,j) = Eσ(i,j). But then, since T is linear, T (αEi,j) =
αT (Ei,j) = αbi,jEσ(i,j) = Eσ(i,j). That is, αbi,j = 1, or bi,j is a unit.
But 1 is the only unit over fuzzy semiring. Thus bi,j = 1 and T (Ei,j) =
Eσ(i,j).
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Now, we construct the sets of matrix pairs that arise as the extremal
cases in the inequalities of zero-term rank of matrix multiplications listed
at Proposition 2.2 in section 2:

Z1(F) = {(X,Y ) ∈Mn(F )2|z(XY ) = 0},
Z2(F) = {(X,Y ) ∈Mn(F )2|z(XY ) = z(X) + z(Y )}.

Now, we characterize the linear operators that preserve set Z1(F) in
the following theorem.

Theorem 3.4. Let F be a fuzzy semiring, T : Mn(F)→Mn(F) be
a linear surjective map. Then T preserves the set Z1(F) if and only if
T is a nontransposing (P, P t) − operators , where P is a permutation
matrix.

Proof. By Theorem 3.3 we have that T (Ei,j) = Eσ(i,j) for all i, j,
1 ≤ i ≤ m, 1 ≤ j ≤ n, σ is a permutation on the set of pairs (i, j).

Let us show that T maps lines to lines. Suppose that the images of
two cells are in the same line, but the cells are not in the same line, say,
Ei,j , Ei,k are the cells such that T−1(Ei,j), T

−1(Ei,k) are not in the same
line.

Let us consider A = T−1(J \ Ri). Thus there are no zero rows of
A since T is a permutation on the set of cells and not all elements
of the preimage of the i’th row of J lie in one row by the choice of
i. Hence AJ does not have zero elements by the additions and mul-
tiplications in F and z(AJ) = 0. Thus (A, J) ∈ Z1(F) as far as
(T (A), T (J)) = (T (T−1(J \ Ri)), T (J)) = (J \ Ri, T (J)) 6∈ Z1(F ), since
z((J \ Ri)(T (J))) = z(J \ Ri) = 1, a contradiction to the assumption
that T preserves the set Z1(F) .

Moreover, since σ is bijective on the set of pairs (i, j) and each row
intersects each column and does not intersect rows, T maps rows to rows
and columns to columns, or , it is also possible that T maps all rows to
columns and all columns to rows. Thus there are permutation matrices
P andQ such that T (Ei,j) = PEi,jQ, or, T (Ei,j) = PEj,iQ = P (Ei,j)

tQ,
i.e, T is a (P,Q)-operator where P and Q are permutation matrices of
order n. Let us show that Q = P t . Assume on the contrary that QP 6=
I. Thus there exist indexes i, j such that QP transforms i’th column into
j’th column. In this case we take matricesA = J\(E1,1+· · ·+E1,n)+E1,i,
B = J\Ej,1. Thus AB has no zero elements, i.e, z(AB) = 0. However,

the (1, j)th element of T (A)T (B) is zero, i.e, z(T (A)T (B)) 6= 0, which
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contradicts the fact that T preserves Z1(F). This contradiction implies
that QP = I. Thus Q = P t. Hence T is a (P, P t)− operator.

Conversely (P,Q)-operators preserve zero term rank by Lemma 3.2.
Thus (P, P t)− operators preserve the set Z1(F).

Example 3.5. Let F be a fuzzy semiring, T : M4(F) → M4(F) be
a surjective map such that T (X) = PXQ, where

P = I4, Q =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , and QP = Q 6= I4.

Then T maps rows to themselves. But T maps 1st column of X to
itself, 2nd column of X to 3rd column, 3rd column of X to 2nd column
and 4th column of X to 4th column.
Let A = J4−C3 and B = R2 in M4(F). Then AB = J4. Thus z(AB) = 0
and hence (A,B) ∈ Z1(F). But T (A) = J4 − C2 and T (B) = R2 in
M4(F). Then T (A)T (B) = O4 and hence z(T (A)T (B)) = 4. Thus
(T (A), T (B)) 6∈ Z1(F).

This example shows that linear operator T does not preserve Z1(F),
because T is not (P, P t)− operator.

Now, we characterize the linear operator that preserves the extremal
set Z2(F).

Theorem 3.6. Let F be a fuzzy semiring and T : Mn(F)→Mn(F)
be a linear surjective map. Then T preserves the set Z2(F) if and only
if T is a nontransposing (P, P t) − operator, where P is a permutation
matrix.

Proof. By Theorem 3.3 we have that T (Ei,j) = Eσ(i,j) for all i, j,
1 ≤ i ≤ m, 1 ≤ j ≤ n, σ is a permutation on the set of pairs (i, j).

Let us show that T maps lines to lines. Suppose that the images of
two cells are not in the same line, but the cells are in the same line, say,
Ei,j , Ei,k are the cells such that T (Ei,j), T (Ei,k) are not in the same line.

Note that z((J\Ri)J) = z(J\Ri) = 1 = 1+0 = z(J\Ri)+z(J). Thus
(J \Ri, J) ∈ Z2(F). Now, T (J \Ri has no zero rows by above argument,
and T (J) = J over Mn(F). Hence T (J \Ri)T (J) = T (J \Ri)J = J on
Mn(F) by the sums and products over F . Thus z(T (J \Ri)T (J)) = 0.
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On the other hand, (T (J \Ri), T (J)) 6∈ Z2(F). This contradiction shows
that T maps lines to lines.

It follows from Lemma 3.1 that T is a (P,Q)-operator where P and
Q are permutation matrices of order n.

To show that transposition operator does not preserve Z2(F), it suf-
fices to take the pair of matrices A = J \ Ri, B = J \ Ci. Consider
A = J \R1, B = J \C1. Then z(AB) = 2 = 1 + 1 = z(A) + z(B), hence
(A,B) ∈ Z2(F). But z(AtBt) = z(J) = 0 and z(At) = z(Bt) = 1.
Hence z(AtBt) 6= z(At) + z(Bt), that is, (At, Bt) 6∈ Z2(F). Thus
(T (A), T (B)) 6∈ Z2(F). This show that transposing operator does not
preserve Z2(F). Therefore T is a nontransposing (P,Q)-operator.

Let us show that Q = P t now. Assume on the contrary that QP 6= I.
Thus there exists indexes i, j such that QP transforms i’th column into
j’th column. But then consider A = J \ Ci, B = Ri. We have z(AB)
= z(0) = n =1 + (n − 1) = z(A) + z(B). Hence (A,B) ∈ Z2(F).
But z(AQPB) = z((J \ Cj)Ri) = z(J) = 0 and z(AQP ) + z(B) =
1+(n−1) = n. Thus (T (A), T (B)) 6∈ Z2(F), which contradicts the fact
that T preserves Z2(F). This contradiction implies that QP = I, and
Q = P t. We have T is a nontransposing (P, P t)-operator.

Conversely, (P,Q)-operator preserves zero term rank by Lemma 3.2.
Thus (P, P t)-operator preserve the set Z2(F).

Example 3.7. Let F be a fuzzy semiring, T : M4(F) → M4(F) be
a surjective map such that T (X) = PXQ, where

P = I4, Q =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , and QP = Q 6= I4,

which is the same linear operator as in Example 3.5.

Let E = J4 − C2 and F = R2 in M4(F). Then EF = O4. Thus
z(EF ) = 4 = 1 + 3 = z(E) + z(F ) and hence (E,F ) ∈ Z2(F). But
T (E) = J4 − C3 and T (F ) = R2 in M4(F). Then T (E)T (F ) = J4 and
hence z(T (E)T (F )) = 0 6= 4 = 1 + 3 = z(T (E)) + z(T (F )). Thus
(T (E), T (F )) 6∈ Z2(F).

This example shows that linear operator T does not preserve Z2(F),
because T is not (P, P t)− operator.
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As a concluding remark, we have characterized the linear operator T
that preserve the extreme sets of the zero-term rank inequalities of the
matrix multiplications over fuzzy semiring as (P, P t)− operator.
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