
Rapid Report

Interdisciplinary Bio Central Open Access, Open Review Journal

www.ibc7.org Volume 3 | Article no. 0009

Page 1 of 5

Optimized Entity Attribute Value Model: A Search Efficient Re-
presentation of High Dimensional and Sparse Data

Razan Paul
1
 and Abu Sayed Md. Latiful Hoque

1,*

1
Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000,

Bangladesh

Subject areas:
Biological computation/Database

*Correspondence and requests for
materials should be addressed to
A.S.M.L.H. (asmlatifulhoque@cse.
buet.ac.bd)

Editor: Hong Gil Nam, POSTECH,
Republic of Korea

Received June 30, 2011;
Accepted July 06, 2011;
Published July 06, 2011

Citation: Paul, R., et al. Optimized
Entity Attribute Value Model: A Search
Efficient Representation of High Di-
mensional and Sparse Data. IBC 2011,
3:9, 1-5.
doi: 10.4051/ibc.2011.3.3.0009

Funding: Research funding of BUET

Competing interest: All authors
declare no financial or personal con-
flict that could inappropriately bias
their experiments or writing.

Copyright: This article is licensed
under a Creative Commons Attribution
License, which freely allows to down-
load, reuse, reprint, modify, distribute,
and/or copy articles as long as a
proper citation is given to the original
authors and sources.

This article is part of the special issue:
the 9th Asia Pacific Bioinformatics
Conference (APBC2011).

SYNOPSIS

Entity Attribute Value (EAV) is the widely used solution to represent high dimensional and

sparse data, but EAV is not search efficient for knowledge extraction. In this paper, we

have proposed a search efficient data model: Optimized Entity Attribute Value (OEAV) for

physical representation of high dimensional and sparse data as an alternative of widely

used EAV. We have implemented both EAV and OEAV models in a data warehousing en-

vironment and performed different relational and warehouse queries on both the models.

The experimental results show that OEAV is dramatically search efficient and occupy less

storage space compared to EAV.

Keywords: EAV, OEAV, open schema, sparse data, high dimensional data

mailto:asmlatifulhoque@cse.buet.ac.bd
mailto:asmlatifulhoque@cse.buet.ac.bd

Full Report

Interdisciplinary Bio Central Open Access, Open Review Journal

www.ibc7.org Volume 3 | Article no. 0009

Page 2 of 5

Introduction

In various domains, integrating Large-scale heterogeneous data

is important for knowledge discovery. Once this knowledge is dis-

covered, the results of such analysis can be used to define new

guidelines. We require an open schema data model to support

dynamic schema change, sparse data, and high dimensional data.

In open schema data models, logical model of data is stored as

data rather than as schema, so changes to the logical model can

be made without changing the schema. In open schema data mod-

el, schema is kept as data. EAV
1
 is the widely used open schema

data model to handle these challenges of data representation.

However, EAV suffers from higher storage requirement and not

search efficient. In this paper, we have proposed a search efficient

open schema data model: OEAV. This model is storage efficient as

well compared to existing EAV model.

Section 2 describes the related work. The overview of EAV, the

details organizational structure and analysis of OEAV are given in

section 3. A data transformation is required to adopt the existing

data suitable for data warehouse representation for knowledge

extraction. The transformation is elaborated in section 4. Analytical

details of performance of the proposed models are given in section

5. Section 6 offers the result and discussion. Section 7 is the con-

clusion.

Related Work

EAV gives us extreme flexibility in data representation but it is not

search efficient as it keeps attribute name as data in attribute col-

umn and has no tracking of how data are stored. To handle the high

dimensionality and sparseness of medical data, in Thomas et al.
2

authors have used EAV, but EAV is not a search efficient data

model for knowledge discovery. To handle data sparseness and

schema change of phenotype data, the EAV model has been used

for phenotype data management in Li et al.
3
. Use of EAV for medi-

cal observation data is also found in Anhoj et al.
4
, Brandt et al.

5
,

Nadkarni et al.
6
, Nadkarni, P.M.

7
 as medical observation data are

sparse, high dimensional and need frequent schema change. The

Entity-Relationship Model is proposed in Pin-Shan Peter, C.
8
. Sto-

rage and querying of high dimensional sparsely populated data is

proposed in Latiful Hoque, A.S.M.
9
. But this model does not keep

the data in search efficient way. Agarwal et al.
10

 propose several

methods for the efficient computation of multidimensional aggre-

gates. In Adam et al.
11

 authors propose data cube as a relational

aggregation operator generalizing group-by, crosstab, and subtotals.

Open Schema Data Models

A. Entity-Attribute-Value Model (EAV)

EAV is an open schema data model, which is suitable for high

dimensional and sparse data like medical data. In EAV, every fact is

conceptually stored in a table, with three sets of columns: entity, an

attribute, and a value for that attribute. In this design, one row ac-

tually stores a single fact. It eliminates sparse data to reduce data-

base size and allows changing set of attributes. Moreover, EAV can

represent high dimensional data, which cannot be modeled by rela-

tional model because existing RDBMS only support a limited num-

ber of columns. EAV gives us extreme flexibility but it is not search

efficient as it keeps attribute name as data in attribute column and

has no tracking of how data are stored.

B. Optimized Entity Attribute Value (OEAV)

To remove the search inefficiency problem of EAV whilst preserv-

ing its efficiency of representing high dimensional and sparse data,

we have developed a search efficient open schema data mod-

el OEAV. This model keeps data in a search efficient way.

This approach is a read-optimized representation whereas the

EAV approach is write-optimized. Most of the data warehouse sys-

tems write once and read many times, so the proposed approach

can serve the practical requirement of data warehouse. Figure 1

shows the step by step approach of transformation of an EAV data

representation to an equivalent OEAV data representation. In step 1,

Figure 1. Transformation of EAV model to Optimized EAV (OEAV) model.

Full Report

Interdisciplinary Bio Central Open Access, Open Review Journal

www.ibc7.org Volume 3 | Article no. 0009

Page 3 of 5

this model constructs an attribute dictionary where there is an in-

teger code for each attribute.

Attribute name of each fact is mapped to an integer code using

the attribute dictionary. All types of values are treated as integer

using a data transformation as discussed in the following section. In

step2, a compact single integer Attribute Value (AV) is created by

concatenating binary representation of attribute code and value. In

OEAV, every fact is conceptually stored in a table with two columns:

the entity and the AV. It maps attribute code and value to p bit and q

bit integer and concatenate them to n bit integer AV. For example,

an attribute value pair (A3, 51), the code of attribute A3 is 3, will be

converted in the following ways: (A3, 51) → (3, 51) → (0000000000

000011, 0000000000110011) → 000000000000001100000000001

10011 = 196659.

In step 3, the records of optimized EAV are stored as sorted order

of AV field. As data are stored in sorted order of AV and the first p

bits of AV are for attribute code, the records of an attribute in OEAV

table remains consecutively. In step 4, an index structure, which is a

part of OEAV representation, is created to contain the starting

record number (Pointer) of each attribute in OEAV table. This

makes the data partitioned attribute wise, which is expected by

most analytical program. In sorted AV field, the values of an

attribute also remain in sorted order and binary search can be ap-

plied on it. This model constructs a modified B+ tree index on entity

field of OEAV to make entity wise search efficient. Here each leaf of

the modified B+ tree keeps the block address of attribute values for

each entity. These Search efficiencies of OEAV are absent in con-

ventional EAV representation.

Data Transformation Using Domain Dictionary and
Rule Base

For knowledge discovery, the data have to be transformed into a

suitable transaction format to discover knowledge. We address the

problem of mapping data to items using domain dictionary and rule

base. The data are type of categorical, continuous numerical data,

Boolean, interval, percentage, fraction and ratio. Domain expert

have the knowledge how to map ranges of numerical data for each

attribute to a series of items. For example, there are certain conven-

tions to consider a person is young, adult, or elder with respect to

age. A set of rules is created for each continuous numerical attri-

bute using the knowledge of domain experts. A rule engine is used

to map continuous numerical data to items using these developed

rules.

Data, for which domain expert knowledge is not applicable; we

have used domain dictionary approach to transform these data to

numerical forms. Here the mapping process as shown in Figure 2

for medical data is divided in two phases. Phase 1: a rule base is

constructed based on the knowledge of domain experts and dictio-

naries are constructed for attributes where domain expert know

ledge is not applicable, Phase 2: attribute values are mapped to

integer values using the corresponding rule base and the dictiona-

ries.

Storage Analysis of EAV & OEAV

Let b be the total number of blocks of observation table and k is

the total number of attributes of observation table.

A. Analysis of storage capacity of EAV

Let n = total number of facts, q average length of attribute

names, g average length of values. In EAV, 32 bits (4 bytes) is

required to represent entity. Size of each fact in EAV is)4(gq

bytes. Hence, the total size to hold all facts is)4(gqnS 

bytes.

B. Space complexity of medical domain dictionaries and rule

base

Let iC cardinality of i
th
 attribute where domain expert know-

ledge is not applicable, iL average length of i
th
 attribute name, P

= number of categorical attributes. Codes of attributes are not

stored explicitly and the index of attribute is the code. Domain dic-

tionary storage of i
th
 attribute is

ii LC  bytes. Total domain dictio-

naries storage (SD) is 


p

i 1

)ii LC  bytes. If the size of rule base

storage is R, the dictionary and rule base storage (SDR) is

 RLC ii

p

i




)
1

 bytes.

C. Analysis of storage capacity of OEAV

Let p number of attributes, q

average length of attribute

names. Total storage of attribute dictionary is qp  bytes. Let S

size of each block address in byte. Total storage of index table is
Spqp  bytes. In OEAV, 32 bits are required to represent enti-

ty and 16 bits are required for attribute and value individually. 64

Figure 2. Data Transformation of Medical Data.

Full Report

Interdisciplinary Bio Central Open Access, Open Review Journal

www.ibc7.org Volume 3 | Article no. 0009

Page 4 of 5

bits = 8 bytes = size of each fact in OEAV. Let n = total number of

facts, m = total number of facts in a block, w = word size (bytes).

Total number of blocks is  mn / . The number of words per fact is

 w/64 . For block i where 1≤ i ≤  mn / , the number of words per

block is   )/64(wm and the size of the block is    .)/64(wmw 

Hence the size to hold all facts is      )/64(/ wmwmnS  . In

OEAV, total size to hold all facts = storage for facts + storage for

domain dictionaries and rule base + storage for attribute dictionary

+ storage for index table + storage for modified B+ tree    wmn /

   )/64(wm)(
1

ii

p

i

LC 


BSpqpqpR )()(bytes.

Results and Discussion

The experiments were done using PC with core 2 duo processor

with a clock rate of 1.8 GHz and 3GB of main memory. The operat-

ing system was Microsoft Vista and implementation language was

c#. We have designed a data generator that generates all catego-

ries of random data: ratio, interval, decimal, integer, percentage etc.

This data set is generated with 5000 attributes and (5-10) attributes

per transaction on average. We have used highly skewed attributes

in all performance evaluations to measure the performance im-

provement of our proposed open schema data models in worst case.

For all performance measurement except storage performance, we

have used 1 million transactions.

A. Storage performance

Figure 3 shows the storage space required by EAV and OEAV.

The EAV occupies significantly higher amount of storage than

OEAV. This is due to the data redundancy of EAV models.

B. Time comparison of projection operations

Figure 4 shows the performance of projection operations on vari-

ous combinations of attributes. Almost same time is needed with

different number of attributes in EAV, as it has to scan all the blocks

whatever the number of attributes. In OEAV, it can be observed that

the time requirement is proportional to the number of attributes

projected. This is because that the query needs to scan more num-

ber of blocks as the number of attributes increases.

C. Time comparison of select queries

Figure 5 shows the performance of multiple predicates select

queries on various combinations of attributes. Figure 5 shows al-

most same time is taken with different number of attributes in EAV

as it has to scans all the blocks twice whatever the number of

attributes in predicate. The graph shows how time is varied in

OEAV with different number of attributes as it scans number of

attribute partitions proportional to number of attributes in select

quires. This experiment shows EAV has taken much higher time

compared to OEAV. It is because it has no tracking of how data are

stored, so it has to scans all the blocks once to select entities and

has to scan all the blocks one more time to retrieve the attribute

values for the selected entities. OEAV has taken the lower time as it

does not need to read unused attributes to select entities and can

retrieve attribute values of these entity without reading any unused

attribute value using entity indexing.

D. Time comparison of aggregate operations

Aggregate operations compute a single value by taking a collec-

tion of values as input. Figure 6 shows the performance of various

aggregate operations on a single attribute. Time is not varied signif-

icantly from one aggregate operation to another as different aggre-

gate operations need same number of data block access for most of

the cases. Figure 6 shows EAV has taken much higher time than

OEAV as it has to scan all the blocks to compute each operation.

OEAV has taken negligible time for max, min, count operations on a

single attribute as to find max and min it has to scan only 1 block

and count result is computed from its index table. For average op-

eration on an attribute, it has taken considerable time, as it has to

scan all the blocks of that attribute.

E. Time comparison of statistical operations

Figure 7 shows the performance of various statistical operations

on a single attribute. Time is varied significantly from one statistical

operation to another as different statistical operations need different

sorts of processing. This experiment shows EAV has taken much

higher time compared to OEAV. It is because it has no tracking of

how data are stored, so it has to scan all the blocks to compute

each operation. We can see from this figure OEAV has taken neg-

ligible time for median operation as it has to scan 1 or 2 blocks for

this operation. For mode and standard deviation, it has to scan all

data blocks of the attribute for which particular operation is execut-

ing once, twice respectively.

F. Time comparison of CUBE operations

The CUBE operation is the n-dimensional generalization of group-

0

200

400

600

1 2 3

St
o

ra
ge

(M
B

)

Number of transactions(million)

EAV

OEAV

0

20

40

60

Q1 Q2 Q3

T
im

e
(S

e
co

n
d

s)

EAV

OEAV

Figure 3. Storage performance. Figure 4. Time comparison of projection operations.

0

50

100

150

Q4 Q5 Q6

Ti
m

e
(S

e
co

n
d

s)

EAV

OEAV

0

10

20

30

40

Q7 Q8 Q9 Q10

Ti
m

e
(S

e
co

n
d

s)

EAV

OEAV

Figure 5. Time comparison of select queries. Figure 6. Time comparison of aggregate operations.

Full Report

Interdisciplinary Bio Central Open Access, Open Review Journal

www.ibc7.org Volume 3 | Article no. 0009

Page 5 of 5

by operator. The cube operator unifies several common and popular

concepts: aggregates, group by, roll-ups and drill-downs and, cross

tabs. Here no pre-computation is done for aggregates at various

levels and on various combinations of attributes. Figure 8 shows the

performance of CUBE operations on various combinations of

attributes. It can be observed that the number of attributes in cube

operations leads to the time taken as CUBE operation computes

group-bys corresponding to all possible combinations of CUBE

attributes. The experiment results show that EAV has taken much

higher time compared to OEAV as it does not partition data

attributes wise and it has no entity index.

Conclusion

EAV is a widely used solution to model data which are sparse,

high dimensional and need frequently schema change, but EAV is

not a search efficient data model for knowledge discovery. In this

paper, we have proposed a search efficient open schema data

models OEAV to model high dimensional and sparse data as an

alternative of EAV. We have implemented both EAV and OEAV

models in a data warehousing environment and performed different

relational and warehouse queries on both the models. We have

achieved a query performance faster in the range of 15 to 70 com-

pared to existing EAV model. These efficiencies arise due to binary

data representation in OEAV where as string representation is used

in EAV model. The experiment results show our proposed open

schema data model is dramatically efficient in knowledge discovery

operation and occupy less storage compared to widely used EAV

model.

References

1. Stead, W.W., Hammond, W.E., and Straube, M.J. (1983). A

chartless record--is it adequate? J Med Syst 7, 103-109.

2. Thomas, E.J., Jeffrey, T.W., and Dubbels Joel, C. (2007). A

health-care data model based on the HL7 reference information

model. IBM Systems Journal 46, 5-18.

3. Li, J.L., Li, M.X., Deng, H.Y., Duffy, P.E., and Deng, H.W. (2005).

PhD: a web database application for phenotype data manage-

ment. Bioinformatics 21, 3443-3444.

4. Anhoj, J. (2003). Generic design of Web-based clinical databas-

es. J Med Internet Res 5, e27.

5. Brandt, C.A., Deshpande, A.M., Lu, C., Ananth, G., Sun, K.,

Gadagkar, R., Morse, R., Rodriguez, C., Miller, P.L., and Nad-

karni, P.M. (2003). TrialDB: A web-based Clinical Study Data

Management System. AMIA Annu Symp Proc, 794.

6. Nadkarni, P.M., Brandt, C., Frawley, S., Sayward, F.G., Einbinder,

R., Zelterman, D., Schacter, L., and Miller, P.L. (1998). Manag-

ing attribute--value clinical trials data using the ACT/DB client-

server database system. J Am Med Inform Assoc 5, 139-151.

7. Nadkarni, P. http://ycmi.med.yale.edu/nadkarni/Introduction%20-

to%20EAV%20systems.htm. Yale University School of Medicine.

[Online].

8. Pin-Shan Peter, C. (1976). The entity-relationship model-toward

a unified view of data. ACM Transactions on Database Systems

1, 9-36.

9. Hoque., A.S.M.L. (2002). Storage and querying of high dimen-

sional sparsely populated data in compressed representation.

Lecture Notes on Computer Science, 2510, 418-425.

10. Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton,

J.F., Ramakrishnan, R., and Sarawagi, S. (1996). On the Com-

putation of Multidimensional Aggregates. In Very Large Data

Bases 506-521.

11. Adam, B., Jim, Gray., Andrew, Layman., Hamid, Pirahesh.

(1997). Data cube: a relational aggregation operator generaliz-

ing group-by, cross-tab and sub-totals. Data Mining and Know-

ledge Discovery 1, 29-53.

0

50

100

150

Q11 Q12 Q13

Ti
m

e
(S

e
co

n
d

)

EAV

OEAV

0

10

20

30

40

Q14 Q15 Q16

Ti
m

e
(S

e
co

n
d

s)
x

1
0

0
0

0

EAV

OEAV

Figure 7. Time comparison of statistical operations. Figure 8. Time comparison of CUBE operations.

Q1: Select Ai from observation;

Q2: Select Ai , Aj ,Ak from observation.

Q3: Select Ai, Aj, Ak, Al, Am from observation.

Q4: Select * from observation where Ai=’XXX’.

Q5: Select * from observation where Ai=’XXX’ AND Aj=’YYY’.

Q6: Select * from observation where Ai=’XXX’ AND Aj=’YYY’ AND Ak=’ZZZ’.

Q7: Select AVG (Ai) from observation.

Q8: Select Max (Ai) from observation.

Q9: Select Min (Ai) from observation.

Q10: Select Count (Ai) from observation.

Q11: Select Median (Ai) from observation.

Q12: Select Mode (Ai) from observation.

Q13: Select Standard Deviation (Ai) from observation.

Q14: Select Ai, Aj, Max (Am) from observation CUBE-BY (Ai, Aj)

Q15: Select Ai, Aj, AK, Max (Am) from observation CUBE-BY (Ai, Aj, Ak)

Q16: Select Ai, Aj, AK, Am, Max (An) from observation CUBE-BY (Ai, Aj, Ak, An)

http://ycmi.med.yale.edu/nadkarni/Introduction%20to%20EAV%20systems.htm
http://ycmi.med.yale.edu/nadkarni/Introduction%20to%20EAV%20systems.htm

