Isolation of Prenylated Isoflavonoids from Cudrania tricuspidata Fruits that Inhibit A2E Photooxidation

  • Uddin, Golam Mezbah (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Lee, Hee-Ju (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Jeon, Je-Seung (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Chung, Dong-Hwa (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Kim, Chul-Young (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute)
  • Received : 2011.07.20
  • Accepted : 2011.08.20
  • Published : 2011.09.30

Abstract

High-performance liquid chromatography coupled to an online $ABTS^+$-based assay (online HPLC-$ABTS^+$) system was used to determine the principal antioxidants in Cudrania tricuspidata fruits. Six prenylated isoflavonoids (1 - 6) were isolated from C. tricuspidata fruits according to the online HPLC-$ABTS^+$ system. The structures of isolated compounds, alpiniumisoflavone (1), 6,8-diprenylorobol (2), 6,8-diprenylgenistein (3), pomiferin (4), 4'-methylalpiniumisoflavone (5), and osajin (6) were identified by their retention time, UV spectra, ESI-MS, and NMR data. Among these compounds, 6,8-diprenylorobol (2) and pomiferin (4) reduced A2E photooxidation in a dose dependent manner.

Keywords

References

  1. Ben-Shabat, S., Itagaki, Y., Jockusch, S., Sparrow, J.R., Turro N.J., and Nakanishi, K., Formation of a nona-oxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew. Chem. Int. Ed. Engl. 41, 814-817 (2002). https://doi.org/10.1002/1521-3773(20020301)41:5<814::AID-ANIE814>3.0.CO;2-2
  2. Bhosale, R., Serban, B., and Bernstein, P.S., Retinal carotenoids can attenuate formation of A2E in the retinal pigment epithelium. Arch. Biochem. Biophyis. 483, 175-181 (2009). https://doi.org/10.1016/j.abb.2008.09.012
  3. Fujimoto, T., Hano, Y., and Nomura, T., Components of root dark of Cudrania tricuspidata 1. Structures of four new isoprenylated xanthones, cudraxanthones A, B, C and D. Planta Med. 50, 218-221 (1984). https://doi.org/10.1055/s-2007-969682
  4. Han, X.H., Hong, S.S., Jin, Q., Li, A., Kim, H.K., Lee, J., Kwon, S.H., Lee, D., Lee, C.-K., Lee, M.K., and Hwang, B. Y., Prenylated and benzylated flavonoids from the fruits of Cudrania tricuspidata. J. Nat. Prod. 72, 164-167 (2009). https://doi.org/10.1021/np800418j
  5. Han, X.H., Hong, S.S., Hwang, J.S., Jeong, S.H., Hwang, J.H., Lee, M.H., Lee, M.K., Lee, D., Ro, J.S., and Hwang, B.Y., Monoamine oxidase inhibitory constituents from the fruits of Cudrania tricuspidata. Arch. Pharm. Res. 28, 1324-1327 (2005). https://doi.org/10.1007/BF02977895
  6. Hano, Y., Matsumoto, Y., Sun, J.Y., and Nomura, T., Structures of three new isoprenylated xanthones, cudraxanthones E, F, and G. Planta Med. 56, 399-402 (1990). https://doi.org/10.1055/s-2006-960993
  7. Hano, Y., Matsumoto, Y., Shinohara, K., Sun, J.Y., and Nomura, T., Structures of four new isoprenylated xanthones, cudraxanthones L, M, N, and O from Cudrania tricuspidata. Planta Med. 57, 172-175 (1991). https://doi.org/10.1055/s-2006-960059
  8. Hano, Y., Matsumoto, Y., Sun, J.-Y., and Nomura, T., Structures of four new isoprenylated xanthones, cudraxanthones H, I, J, and K. Planta Med. 56, 478-481 (1990). https://doi.org/10.1055/s-2006-961016
  9. Jung, B.S. and Shin, M.K., Encyclopedia of illustrated Korean natural drugs. Young Lim Sa, Seoul, pp. 544-545, 1990.
  10. Jang, Y.P., Zhou, J., Nakanishi, K., and Sparrow, J.R., Anthocyanins protect Against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. Photochem. Photobiol. 81, 529-536 (2005). https://doi.org/10.1562/2004-12-14-RA-402.1
  11. Kim, C.Y., Lee, H.J., Jung, S.H., Lee, E.H., Cha, K.H., Kang, S.W., Pan, C.-H., and Um. B.H., Rapid identification of radical scavenging phenolic compounds from balck bamboo leaves using highperformance liquid chromatography coupled to an online ABTS+-based assay. J. Kor. Soc. Appl. Biol. Chem. 52, 613-619 (2009). https://doi.org/10.3839/jksabc.2009.102
  12. Laabich, A., Manmoto, C.C., Kuksa, V., Leung D.W., Vissvesvaran, G.P., Karliga, I., Kamat, M., Scott, I.L., Fawzi, A., and Kubota, R., Protective effects of myricetin and related flavonols against A2E and light mediated-cell death in bovine retinal primary cell culture. Exp. Eye Res. 85, 154-165 (2007). https://doi.org/10.1016/j.exer.2007.04.003
  13. Monache, G.D., Scurria, R., Vitali, A., Botta, B., Manacelli B., Pasqua G., palocci C., and Cernia E., Two isoflavones and a flavones from the fruits of Maculura pomifera. Phytochemistry 37, 893-898 (1994). https://doi.org/10.1016/S0031-9422(00)90379-0
  14. Novruzov, E.N. and Agamirov, U.M., Carotenoids of Cudrania tricuspidata fruit. Chem. Nat. Comp. 5, 468-469 (2002).
  15. Nuengchamnong, N., de Jong, C.F., Bruyneel, B., Niessen, W.M.A., Irth, H., and Ingkaninan, K. HPLC coupled on-line to ESI-MS and a DPPH-based assay for the rapid identification of anti-oxidants in Butea superba. Phytochem. Anal. 16, 422-428 (2005). https://doi.org/10.1002/pca.865
  16. Olivares, E.M., Lwande, W., Monache, F.D., and Bettolo, G.B.M. A pyrano-isoflavone from seeds of Milltia thonningii. Phytochemistry 21, 1763-1765 (1982) https://doi.org/10.1016/S0031-9422(82)85056-5
  17. Parish, C.A., Hashimoto, M., Nakanish, K., Dillon, J., and Janet, S., Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc. Natl. Acad. Sci.U.S.A. 95, 14609-14613 (1998). https://doi.org/10.1073/pnas.95.25.14609
  18. Perez-Bonilla, M., Salido, S., van Beek, T.A., Linares-Palomino, P.J., Altarejos, J., Nogueras, M., and Sanchez, A., Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. J. Chromatogr. A 1112, 311-318 (2006). https://doi.org/10.1016/j.chroma.2005.12.055
  19. Singhal, A.K., Sharma, R.P., Thyagarajan, G., Herz, W., and Govindan, S.V., New prenylated isoflavones and a prenylated dihydroflavonol from Millettia pachycarpa. Phytochemistry 19, 929-934 (1980). https://doi.org/10.1016/0031-9422(80)85140-5
  20. Sparrow, J.R., Nakanishi, K. and Parish C.A., The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest. Ophthalmol. Vis. Sci. 41, 1981-1989 (2000).
  21. Sparrow J.R., Vollmer-Snarr, H.R., Zhou, J., Jang, Y.P., Jockusch, S., Itagaki, Y., and Nakanishi, K., A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 278, 18207-18213 (2003). https://doi.org/10.1074/jbc.M300457200
  22. Sparrow, J.R., Zhou, J., Ben-Shabat, S., Vollmer, H., Itagaki, Y., and Nakanishi, K., Involvement of oxidative mechanisms in blue light induced damage to A2E-laden RPE. Invest. Ophthalmol. Vis. Sci. 43, 1222-1227 (2002).
  23. Stewart, A.J., Mullen, W., and Crozier, A., On-line high-performance liquid chromatography analysis of the anti-oxidant activity of phenolic compounds in green and black tea. Mol. Nutrit. Food Res. 49, 52-60 (2005). https://doi.org/10.1002/mnfr.200400064
  24. Zou, Y.S., Hou, A.J., and Zhu, G., Isoprenylated xanthones and flavonoids from Cudrania tricuspidata. Chem. Biodiv. 2, 131-138 (2005). https://doi.org/10.1002/cbdv.200490164