DOI QR코드

DOI QR Code

Determination of Positional Fatty Acid and Triacylglycerol Compositions of Selected Infant Formulas

영유아용 조제분유의 위치별 지방산 및 Triacylglycerols의 정성 분석

  • Son, Jeoung-Mae (Dept. of Food Science & Technology, Chungnam National University) ;
  • Lee, Jeung-Hee (Dept. of Food Science & Technology, Chungnam National University) ;
  • Hong, Soon-Taek (Dept. of Food Science & Technology, Chungnam National University) ;
  • Lee, Kyung-Su (Dept. of Food Science & Technology, Chungnam National University) ;
  • Park, Hye-Kyung (Nutrition Policy Division, Nutrition Policy Office, Korea Food & Drug Administration) ;
  • Kwon, Kwang-Il (Nutrition Policy Division, Nutrition Policy Office, Korea Food & Drug Administration) ;
  • Lee, Ki-Teak (Dept. of Food Science & Technology, Chungnam National University)
  • 손정매 (충남대학교 식품공학과) ;
  • 이정희 (충남대학교 식품공학과) ;
  • 홍순택 (충남대학교 식품공학과) ;
  • 이경수 (충남대학교 식품공학과) ;
  • 박혜경 (식품의약품안전청 영양정책관 영양정책과) ;
  • 권광일 (식품의약품안전청 영양정책관 영양정책과) ;
  • 이기택 (충남대학교 식품공학과)
  • Received : 2011.05.20
  • Accepted : 2011.08.22
  • Published : 2011.09.30

Abstract

Infant formula is one of the main nutritional sources for infants. In this study, the fatty acid compositions of Korean (domestic, n=8) and foreign infant formulas (n=3) were analyzed. Crude fats were extracted using the Folch method, and fatty acid compositions (total and positional) were analyzed by gas chromatography. In the fatty acid compositions of infant formulas, oleic (19.88~44.64%), palmitic (7.59~21.65%) and linoleic acids (16.72~25.87%) were the major fatty acids. Domestic infant formula products contained 35.94~56.55% total saturated fatty acid content, whereas that of foreign infant formula ranged from 34.40~42.88%. The content of monounsaturated fatty acids ranged from 20.23~44.99% in domestic products and 34.11~45.07% in foreign products. In addition, 0.17~2.57% arachidonic acid/docosahexaenoic acid and 10~13% linoleic acid/linolenic acid were detected in the analyzed products (domestic and foreign products). A small amount of trans fatty acids (0.25~1.69%) were found. In sn-2 position analysis, palmitic acids (1.84~38.74%) were detected in the analyzed formulas. Further, typical triacylglycerols in human milk, including 1,3-di-monounsaturated-2-saturated triacylglycerol, were not detected in the analyzed formulas.

시중에 유통되고 있는 조제분유의 지방산 및 TAG 조성을 알아보기 위하여 국내외 조제분유 총 11 품목을 선정하였고, Folch법을 이용하여 지방을 추출한 다음 총 지방산과 sn-2 위치의 지방산 및 silver ion HPLC를 이용한 단일불포화-포화-단일불포화 glycerol(MSM)의 조성을 분석하였다. 조제분유의 조지방의 함량은 17.21~23.51%이었고, 특히 K5의 조지방 함량이 23.51%로써 분석된 조제분유들 중에서 가장 높게 나왔으나, K1은 17.21%의 함량을 보이면서 가장 낮게 나타났다. 분석된 조제분유들의 주요 포화지방산은 lauric acid(C12:0), myristic acid(C14:0), palmitic acid(C16:0), stearic acid(C18:0)이었다. Lauric acid의 함량은 K5와 K6에서 19.49%와 23.34%로 분석되어 15%보다 높은 함량을 나타냈다. 한편, 분석된 조제분유의 palmitic acid의 함량은 7.59~21.65%의 범위로써 K2, K3, K6, F1에서 각각 14.64%, 8.29%, 13.47% 및 7.59%로써 낮은 함량을 나타냈다. 불포화 지방산들 중에서 단일불포화지방산(C14:1, myristoleic acid; C16:1, palmitoleic acid; C17:1, heptadecenoic acid; C18:1, oleic acid; C18:1t, elaidic acid)의 함량은 20.23~45.07%로 나타났고, 단일불포화지방산들 중에서 대부분을 구성하고 있는 지방산은 oleic acid(C18:1)이었다. 분석된 조제분유에서 oleic acid의 함량은 19.64~44.64%의 범위였고 총 다가불포화지방산은 19.08~29.67%의 범위였다. Omega-6 다가불포화지방산과 omega-3 다가불포화지방산의 주요한 지방산은 필수지방산인 linoleic acid(C18:2)와 linolenic acid(C18:3, n-3)로 분석된 조제분유의 비율은 10:1~13:1로, 조제분유의 지방산 조성에 대한 지표인 linoleic acid/linolenic acid의 비율인 5:1~15:1 범위 내였다. 분석한 조제분유들 중에서 sn-2 위치에서의 lauric acid 함량은 7.70~52.09%로 나타났고, myristic acid의 함량은 3.15~20.89%로써 분석된 조제분유들은 전반적으로 sn-2 위치에서의 lauric acid 함량이 20% 이상으로 높게 나타났다. 특히, 분석된 조제분유들의 sn-2 위치에 존재하는 palmitic acid의 함량은 1.84~38.74%의 범위로써 K8과 F3이 각각 38.55%와 38.90%의 높은 함량을 나타냈다. 따라서 대부분의 국내외 조제분유들을 구성하는 triacylglycerol(TAG)의 sn-2 위치에서의 palmitic acid 함량이 모유와 비교하였을 때 낮은 경향을 보임을 알 수 있었다. 이러한 조제분유보다 더 나아가 HPLC 분석을 통해서 모유의 주요 TAG 형태라고 할 수 있는 단일불포화-포화-단일불포화 glycerol(MSM)의 함량이 외국의 조제분유인 F3이 가장 높게 나타났다. 따라서 조제분유에 이러한 MSM 형태의 지방 함량을 높여야하며, MSM 형태의 모유대체지 연구를 산업화하려는 노력이 필요하다.

Keywords

References

  1. Jin HS. 2005. Development of Korean dairy industry-infant formula. Korean J Dairy Sci 23: 115-160.
  2. Innis SM, Quinlan P, Diersen-Schade D. 1993. Saturated fatty acid chain length and positional distribution in infant formula: effects on growth and plasma lipids and ketones in piglets. Am J Clin Nutr 57: 382-390. https://doi.org/10.1093/ajcn/57.3.382
  3. Lopez-Lopez A, Lopez-Sabater MC, Campoy-Folgoso C, Rivero-Urgell M, Castellote-Bargallo AI. 2002. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr 56: 1242-1254. https://doi.org/10.1038/sj.ejcn.1601470
  4. Lien EL. 1994. The role of fatty acid composition and positional distribution in fat absorption in infants. J Pediatr 125: S62-S68. https://doi.org/10.1016/S0022-3476(06)80738-9
  5. Schroeder GF, Delahoy JE, Vidaurreta I, Bargo F, Gagliostro GA, Muller LD. 2003. Milk fatty acid composition of cows fed a total mixed ration or pasture plus concentrates replacing corn with fat. J Dairy Sci 86: 3237-3248. https://doi.org/10.3168/jds.S0022-0302(03)73927-7
  6. Tomarelli RM, Meyers BJ, Weaber JR, Bernhart FW. 1968. Effect of positional distribution on the absorption of the fatty acids of human milk. J Nutr 95: 583-590. https://doi.org/10.1093/jn/95.4.583
  7. Freeman CP, Jack EL, Smith LM. 1965. Intramolecular fatty acid distribution in milk fat triglycerides of several species. J Dairy Sci 48: 853-858. https://doi.org/10.3168/jds.S0022-0302(65)88350-3
  8. Christie WW, Clapperton JL. 1982. Structures of the triglycerides of cow's milk, fortified milks (including infant formulae), and human milk. J Soc Dairy Tech 35: 22-24. https://doi.org/10.1111/j.1471-0307.1982.tb02259.x
  9. Mattson FH, Lutton ES. 1958. Specific distribution of fatty acids in the glycerides of animal and vegetable fat. J Biol Chem 233: 860-871.
  10. Lien EL, Yuhas RJ, Boyle FG, Tomarelli RM. 1993. Corandomization of fats improves absorption in rats. J Nutr 123: 1859-1867. https://doi.org/10.1093/jn/123.11.1859
  11. Carnielli VP, Luijendijk IHT, van Beek RHT, Boerma GJM, Degenhart HJ, Sauer PJJ. 1995. Effect of dietary triacylglycerol fatty acid positional distribution on plasma lipid classes and their fatty acid composition in preterm infants. Am J Clin Nutr 62: 776-781. https://doi.org/10.1093/ajcn/62.4.776
  12. Carnielli VP, Luijendijk IHT, Van Goudoever JB, Sulker EJ, Boerlage AA, Degenhart HJ, Sauer PJJ. 1996. Structural position and amount of palmitic acid in infant formulas: effects on fat, fatty acid, and mineral balance. J Pediatr Gastroenterol Nutr 23: 553-560. https://doi.org/10.1097/00005176-199612000-00007
  13. Kennedy K, Fewtrell MS, Morley R, Abbott R, Quinlan PT, Wells JCK, Bindels JB, Lucas A. 1999. Double-blind, randomized trial of a synthetic triacylglycerol informula-fed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization. Am J Clin Nutr 70: 920-927. https://doi.org/10.1093/ajcn/70.5.920
  14. Morris G, Moorcraft J, Mountjoy A, Wells JCK. 2000. A novel infant formula milk with added long-chain polyunsaturated fatty acids from single-cell sources: a study of growth, satisfaction and health. Eur J Clin Nutr 54: 883-886. https://doi.org/10.1038/sj.ejcn.1601111
  15. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. 1994. Fatty acid composition of brain, retina, and erythrocytes in breast and formula fed infants. Am J Clin Nutr 60: 189-194. https://doi.org/10.1093/ajcn/60.2.189
  16. Lucas A, Stafford M, Morley R, Abbott R, Stephenson T, Macfadyen U, Elias-Jones A, Clements H. 1999. Efficacy and safety of long-chain polyunsaturated fatty acid supplementation of infants-formula milk: a randomized trial. Lancet 354: 1948-1954. https://doi.org/10.1016/S0140-6736(99)02314-4
  17. Belkind-Gerson J, Carreon-Rodriguez A, Contreras-Ochoa CO, Estrada-Mondaca S, Parra-Cabrera MS. 2008. Fatty acid and neurodevelopment. J Pediatr Gastroenterol Nutr 47: S7-S9. https://doi.org/10.1097/MPG.0b013e3181818e3f
  18. Alim MA, Lee JH, Shin JA, Lee YJ, Choi MS, Akoh CC, Lee KT. 2008. Lipase-catalyzed production of solid fat stock from fractionated rice bran oil, palm stearin, and conjugated linoleic acid by response surface methodology. Food Chem 106: 712-719. https://doi.org/10.1016/j.foodchem.2007.06.035
  19. Harfmann RG, Julka S, Cortes HJ. 2008. Instability of hexane-acetonitrile mobile phases used for the chromatographic analysis of triacylglycerides. J Sep Sci 31: 915-920. https://doi.org/10.1002/jssc.200700578
  20. SAS. 2000. SAS Statistics Software, Release 8.2. SAS Institute, Cary, NC, USA.
  21. Van Seeventer PB, Systermans FWG. 2006. Micro-encapsulation of nutritional oils: human milk lipids as a model for infant formula. Agro Food Industry Hi-Tech 17: 9-12.
  22. Jensen RG. 1996. The lipids in human milk. Prog Lipid Res 35: 53-92. https://doi.org/10.1016/0163-7827(95)00010-0
  23. Lim HS, Huh YR. 1994. Lipid and fatty acid composition of Korean breast milk and infant formula. Korean J Nutr 27: 563-573.
  24. Sahin N, Akoh CC, Karaali A.2005. lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. J Agric Food Chem 53: 5779-5783. https://doi.org/10.1021/jf050465e
  25. Yang T, Xu X, He C, Li L. 2003. lipase-catalyzed modification of lard to produce human milk fat substitutes. Food Chem 80: 473-481. https://doi.org/10.1016/S0308-8146(02)00315-1
  26. Maduko CO, Akoh CC, Park YW. 2007. Enzymatic interesterification of tripalmitin with vegetable oil blends for formulation of caprine milk infant formula analogs. J Dairy Sci 90: 594-601. https://doi.org/10.3168/jds.S0022-0302(07)71542-4

Cited by

  1. Efficient Separation and Analysis of Triacylglycerols: Quantitation of β-Palmitate (OPO) in Oils and Infant Formulas vol.63, pp.26, 2015, https://doi.org/10.1021/acs.jafc.5b01835
  2. GC-FID를 이용한 조제유류 중 지방산 분석법 개선 연구 vol.36, pp.1, 2011, https://doi.org/10.13103/jfhs.2021.36.1.34