DOI QR코드

DOI QR Code

Effects of Extracts of Persimmon Leaf, Buckwheat Leaf, and Chinese Matrimony Vine Leaf on Body Fat and Lipid Metabolism in Rats

감잎, 메밀잎 및 구기자잎 추출물의 식이보충이 흰쥐의 체지방 감량과 지질대사 조절에 미치는 효과

  • Jung, Un-Ju (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Lee, Jeong-Sun (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Bok, Song-Hae (Bionutrigen Inc.) ;
  • Choi, Myung-Sook (Dept. of Food Science and Nutrition, Kyungpook National University)
  • 정운주 (경북대학교 생활과학대학 식품영양학과) ;
  • 이정순 (경북대학교 생활과학대학 식품영양학과) ;
  • 복성해 ((주)바이오뉴트리젠) ;
  • 최명숙 (경북대학교 생활과학대학 식품영양학과)
  • Received : 2011.06.03
  • Accepted : 2011.08.22
  • Published : 2011.09.30

Abstract

The objective of this study was to investigate the anti-obesity and lipid-lowering effects of extracts of persimmon leaf (PWE), buckwheat leaf (BWE), and chinese matrimony vine leaf (LWE) in rats fed a high-fat diet (HFD). Male Sprague-Dawley rats (n=40) were divided into four groups: HFD (35% fat, w/w), HFD (38.5% fat, w/w) supplemented with PWE (10%, w/w), BWE (10%, w/w), and LWE (10%, w/w) groups. The epididymal, perirenal, and interscapular white adipose tissue (WAT) weights as well as plasma leptin level were lowest in the LWE group. Supplementation with PWE and BWE also tended to lower the perirenal and retroperitonal WAT weights compared to the HFD control group, and there was a significant decrease in plasma leptin concentration. Furthermore, plasma triglyceride concentration, hepatic cholesterol content, and hepatic lipid droplet accumulation were significantly lower in the PWE, BWE, and LWE groups than in the HFD group. BWE supplementation markedly lowered plasma total cholesterol concentration, although there were no significant differences in plasma HDL-cholesterol concentration and ratio of HDL-cholesterol/total cholesterol among the groups. Hepatic HMG-CoA reductase activity was significantly higher in the PWE and LWE groups than in the HFD group, and hepatic ACAT was not changed by extract supplementation. However, supplementation with PWE, BWE, and LWE significantly increased fecal acidic sterol content in rats fed a HFD. These results suggest that supplementation with PWE, BWE, and LWE may be an effective anti-obesity strategy by lowering body fat weight and improving plasma and hepatic lipid profiles in HFD-fed rats.

본 연구는 한국 고유의 농산물 유래 천연식물인 감잎, 메밀잎 및 구기자잎 추출물의 체내 지질대사 개선 및 항비만 효과를 살펴보기 위하여 고지방식이군(HFD), 고지방 식이에 10%(w/w)의 감잎(PWL), 메밀잎(BWE) 및 구기자잎(LWE) 추출물을 보충한 실험물질 보충군으로 나누어 6주간 실시하였다. 감잎, 메밀잎 및 구기자잎 추출물은 식이섭취량에는 영향을 미치지 않았으나 고지방식이로 인한 체지방 및 혈장 leptin 수준 증가 현상을 억제하는 것으로 나타났다. 특히 구기자잎의 체지방 저하 효과가 세 가지 천연식물 추출물 중 가장 탁월한 것으로 나타났으며 혈장 leptin 수준도 유사한 경향을 보였다. 혈장 중성지질 농도는 고지방식이 대조군과 비교하였을 때 모든 천연식물 추출물 보충에 의해 유의적으로 감소되었다. 혈장 총 콜레스테롤 농도는 메밀잎 추출물 보충으로 고지방식이 대조군에 비해 유의적으로 감소하였으며 혈장 HDL-콜레스테롤 농도 및 HTR은 감잎과 메밀잎 추출물 보충으로 증가하는 경향을 보여 이들 식물추출물 보충이 동맥경화를 예방하는 것으로 평가되었다. 간조직의 콜레스테롤 농도는 세 가지 천연식물 추출물 보충군 모두에서 고지방식이 대조군에 비해 유의적으로 감소되었다. 이러한 세 가지 식물추출물의 지질 저하 효능은 총 분변 배설량 및 분변으로의 담즙산 배설량 증가에 의한 것임을 확인할 수 있었다. 이상의 실험 결과 고지방 식이와 함께 급여한 감잎, 메밀잎, 구기자잎 추출물은 체지방량 감소나 혈장 및 간조직의 지질대사 개선에 긍정적인 영향을 미치는 것으로 나타났다. 이러한 결과는 이들 식물추출물에 다량 함유된 식이섬유소와 flavonoid 등의 생리활성 물질이 지질대사를 개선시키고 지방축적을 억제하여 비만 및 비만과 관련된 고지혈증 등의 심혈관계질환의 발생률을 감소시키는 데 효과가 있을 것으로 사료된다. 그 외에 어떠한 생리활성 성분이 어떻게 작용을 하는지에 대해서는 추후 더 체계적인 연구가 필요할 것으로 사료된다. 특히, 이들 식물에 대한 기존 연구는 주로 열매의 생리활성에 대한 보고이며, 감잎의 경우 분말이나 에탄올 추출물의 항산화 효능에 대한 연구가 대부분이다. 식물의 잎은 일상에서도 쉽게 구할 수 있어 일반인들이 식용으로 이용하기 용이하므로 차와 음료 등의 건강 음료 및 고기능성이 부여된 효율적인 건강기능식품 개발을 통해 소비를 활성화할 수 있을 것으로 기대된다.

Keywords

References

  1. Huh KB. 1990. The present status of nutrition-related diseased and its countermeasures. Korean J Nutr 23: 197-207.
  2. Moon SJ. 1996. Nutritional problems of Korean. Korean J Nutr 29: 371-380.
  3. Lee HK. 1996. Korean disease pattern and nutrition. Korean J Nutr 29: 381-383.
  4. Manninen V, Tenkanen L, Kostinen P, Huttunen T, Manttari M, Heinonen O, Frick H. 1992. Joint effects of serum triglyceride LDL-cholesterol and HDL-cholesterol concentration on coronary heart disease risk in the helsinki heart study. Circulation 85: 37-45. https://doi.org/10.1161/01.CIR.85.1.37
  5. Al Muhtaseb N, Hayat N, Al M. 1989. Lipoproteins and apoproteins in young male survivors of myocardial infarction. Athersclerosis 77: 131-138. https://doi.org/10.1016/0021-9150(89)90074-9
  6. Rifkind BM. 1986. Diet, plasma cholesterol and coronary heart disease. J Nutr 116: 1578-1580. https://doi.org/10.1093/jn/116.8.1578
  7. Kim SH, Lee JM, Kim HY, Kim MK. 1993. The composition of health status with age by fat intake pattern. KSF report.
  8. Oku T. 1994. Special physiology functions of newly developed mono and oligosaccharides. In Functional Foods. Goldberg I, ed. Chapman & Hall, New York and London. p 202.
  9. Van Itallie TB. 1978. Dietary fiber and obesity. Am J Clin Nutr 31: S43-S51. https://doi.org/10.1093/ajcn/31.10.S43
  10. Hladovec J. 1977. Antithrombotic effects of some flavonoids alone and combined with acetylsalicyclic acid. Arzneim Forsch 27: 1989-1992.
  11. Kim CJ, Su SK, Joo JH, Cho SK. 1990. Pharmacological activities of flavonoids (II)-relationships of anti-inflammatory and antigranulomatous actions. Yakhak Hoeji 34: 407-414.
  12. Burkitt DP. 1988. Dietary fiber and cancer. J Nutr 118: 531-533. https://doi.org/10.1093/jn/118.4.531
  13. Robards K. 2003. Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J Chromatogr A 1000: 657-691. https://doi.org/10.1016/S0021-9673(03)00058-X
  14. Chung BS, Shin MK. 1990. The great dictionary of traditional and crude medicine. YoungLim Press, Seoul, Korea. p 3-152.
  15. Matsuo T, Ito S. 1978. The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyrros kaki L). Agric Biol Chem 142: 1637-1640.
  16. Choi JS, Park SH, Choi JH. 1989. Nitrite scavenging effect by flavonoids and its structure effect relationship. Arch Pharm Res 12: 26-31. https://doi.org/10.1007/BF02855742
  17. Funayama S, Hikino H. 1979. Hypotensive principles of Diospyros kaki leaves. Chem Pharm Bull 27: 2865-2867. https://doi.org/10.1248/cpb.27.2865
  18. Uchida S, Edamatsu R, Hiramatsu M, Mori A, Nonaka GY, Nishioka I, Niwa M, Ozaki M. 1987. Condensed tannins scavenge active oxygen free radicals. Med Sci Res 15: 831-834.
  19. Choi SW, Kang WW, Chung SK, Cheon SH. 1996. Antioxidative activity of flavonoids in persimmon leaves. Foods and Biotechnol 5: 119-123.
  20. Hisayuki T, Shizuo T, Yasuyuki S, Toshio T, Teruaki H, Shigeru A, Yoshio T. 1984. Natural antioxidants. I. Antioxidative components of tea leaf (Thea sinensis L.). Chem Pharm Bull 32: 2011-2014. https://doi.org/10.1248/cpb.32.2011
  21. Kim JH, Kim KY, Roh YK, Choi SW. 1997. Antioxidative substances and their changes in the leaves of persimmon (Diospyros kaki ) during growth. Korean J PostHarvest Sci Technol Agric Products 4: 323-330.
  22. Moon SH, Kim KH, Park KY. 1996. Antitumor effect of persimmon leaves in vivo using Sarcoma 180 cells. J Korean Soc Food Sci Nutr 25: 865-870.
  23. Park MH. 1998. Effect of polyphenol compounds from persimmon leaves (Diospyros kaki folium) on immunofunctional and biological activity. PhD Dissertation. Yeungnam University, Gyeongbuk, Korea.
  24. An BJ. 1991. Structural studying of glucosyltransferase and tyrosinase inhibitors isolated from Diospyros kaki folium, Artocarpus heteropyllus folium. PhD Dissertation. Yeungnam University, Gyeongbuk, Korea.
  25. Sung CK, Cho SH. 1992. Studies on the purification and characteristics of tyrosinase from Diospyros kaki Thumb (persimmon). Korean Biochem J 25: 79-87.
  26. Bae DK, Choi HJ, Son CJ, Park MH, Bae JH, An BJ, Bae MJ, Choi C. The study of developing and stability of functional beverage from Korean persimmon (Diospyros kaki L. folium) leaf. Korean J Food Sci Technol 32: 860-866.
  27. Yeshajahu P, George SR. 1972. Amino acid composition of buckwheat. J Agric Food Chem 20: 270-274. https://doi.org/10.1021/jf60180a029
  28. Mazza G. 1987. Lipid content and fatty acid composition of buckwheat seed. Cereal Chem 65: 122-126.
  29. Marshall HG, Pomeranz Y. 1982. Buckwheat: description, breeding, production and utilization. In Advances in Cereal Science and Technology. Pomeranz Y, ed. American Association of Cereal Chemists, St. Paul, MN, USA. p 127-150.
  30. Kim JS, Park YJ, Yang MH, Shim JW. 1994. Variation of rutin content in seed and plant of buckwheat germplasm (Fagopyrum esculentum Moench). Korean J Breed 26: 384-388.
  31. Kim YS, Chung SH, Suh HJ, Chung ST, Cho JS. 1994. Rutin and mineral contents on improved kinds of Korean buckwheat at growing stage. Korean J Food Sci Technol 26: 759-763.
  32. Havsteen B. 1983. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharm 32: 1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
  33. Struthers BJ, Macdonald JR, Dahlgren RR, Hopkins DT. 1983. Effects on the monkey, pig and rat pancreas of soy products with varying levels of trypsin inhibitor and comparison with the administration of cholecystokinin. J Nutr 113: 86-97. https://doi.org/10.1093/jn/113.1.86
  34. Ypshiko Y, Tsuneo F. 1976. Hypertrophy and hyperplasia in the endocrine and exocrine pancreas of rats fed soybean trypsin inhibitor or repeatedly injected with pancreozymin. Arch Histo Jap 39: 67-78. https://doi.org/10.1679/aohc1950.39.67
  35. Sturthers BJ, Macdonald JR, Prescher EE, Hopkins DT. 1983. Influence of several plant and animal proteins on rat pancreas. J Nutr 113: 1503-1512. https://doi.org/10.1093/jn/113.8.1503
  36. Sheo HJ, Jun SJ, Lee MY. 1986. Effect of Lycii fructus extract on experimentally induced liver damage and alloxan diabetes in rabbits. J Korean Soc Food Nutr 15: 136-143.
  37. Cho YJ, Kim SH. 1997. Protective effect of EA fraction of Lycci cortex radix on the hepatic damage in mice induced by $CCl_4$. Korean J Oriental Medical Pathology 11: 63-71.
  38. Yoon CG, Kim HH, Chae SN, Oh MJ, Lee GH. 2001. Hepatic oxygen free radical and alcohol metabolizing enzyme activities in rats fed diets supplemented with Lycium chinense ethanol extract. J Korean Soc Food Sci Nutr 30: 668-672.
  39. Han BH, Park JH, Park MW, Han YM. 1985. Studies on the alkaloid components of the fruit of Lycium chinese. Arch Pharm Res 4: 249-253.
  40. Kim HS, Park YS, Kim C. 1998. Changes of serum lipid profiles after eating Lycii Fructus in rats fed high fat diet. Korea J Nutr 31: 263-270.
  41. Ohmori Y, Ito M, Kishi M, Mizutani H, Katada T, Konishi H. 1995. Antiallergic constituents from oolong tea stem. Biol Pharm Bull 18: 683-686. https://doi.org/10.1248/bpb.18.683
  42. Gomes A, Vedasiromoni JR, Das M, Sharma RM, Ganguly DK. 1995. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J Ethnopharmacol 45: 223-226. https://doi.org/10.1016/0378-8741(95)01223-Z
  43. Bravo L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317-333.
  44. Qian JA, Liu D, Huang AG. 2004. The efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free radical scavenger. Food Chem 87: 283-288 https://doi.org/10.1016/j.foodchem.2003.11.008
  45. McGowan MW, Artiss JD, Strandbergh DR, Zak B. 1983. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29: 538-542.
  46. Allain CC, Poon LS, Chan CSG. 1974. Enzymatic determination of total serum cholesterol. Clin Chem 20: 470-475.
  47. Warnick JB, Benderson J, Albers JJ. 1982. HDL precipitation by dextran sulfate-$MgCl_2$ method. Clin Chem 28: 1379-1385.
  48. Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  49. Sale FO, Marchesine SP, Fishman H, Berra B. 1984. A sensitive enzymatic assay for determination of cholesterol in lipid extract. Anal Biochem 142: 347-350. https://doi.org/10.1016/0003-2697(84)90475-5
  50. Czubayco F, Beumers B, Lammasfuss S, Litjohann D, Bergmann K. 1992. A simplified micoro-method for quantification of fecal excretion of neutral and acidic sterols for outpatient studies in humans. J Lipid Res 32: 1861-1867.
  51. Michael JC, Ian AM. 1980. Enzymatic determination of 3$\alpha$-, 7$\alpha$-, and 12$\alpha$-hydroxyl groups of fecal bile salts. Clin Chem 26: 1298-1300.
  52. Hulcher FH, Oleson WH. 1973. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J Lipid Res 14: 625-631.
  53. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  54. Shapiro DJ, Nordstrom JL, Mitschelen JJ, Rodwell VW, Schimke RT. 1974. Micro assay for 3-hydroxy-3-methylglutaryl- CoA reductase in rat liver and in L-cell fibroblasts. Biochim Biophy Acta 370: 369-377. https://doi.org/10.1016/0005-2744(74)90098-9
  55. Erickson SK, Schrewsberg MA, Brook C, Meyer DJ. 1980. Rat liver acylcoenzyme A:cholesterol acyltransferase: its regulation in vivo and some of properties in vitro. J Lipid Res 21: 930-941.
  56. Gillies PJ, Rathgeb KA, Robinson CS. 1986. Regulation of acyl-CoA:cholesterol acyltransferase activity in normal and atherosclerotic rabbit aortas: role of a cholesterol substrate pool. Exp Mol Pathol 44: 320-339.
  57. Reitman S, Frankel S. 1957. A colorimetric method to determine serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol 29: 56-62.
  58. Rolls BJ, Ello-Martin JA, Tohill BC. 2004. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr Rev 62: 1-17. https://doi.org/10.1111/j.1753-4887.2004.tb00001.x
  59. Gordon DT. 1989. Functional properties vs physiological action of total dietary fiber. Cereal Food World 34: 517-521.
  60. Vahouny GV, Khakafi R, Satchithanandan S, Watkins DW, Story JA, Cassidy MM, Kritchevysky D. 1980. Dietary fiber: effect of chronic intake on cholesterol absorption and metabolism in the rat. Am J Clin Nutr 32: 2182-2191.
  61. Avram AS, Avram MM, James WD. 2005. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53: 671-683. https://doi.org/10.1016/j.jaad.2005.05.015
  62. Lee JS, Lee MK, Ha TY, Bok SH, Park HM, Jeong KS, Woo MN, Do GM, Yeo JY, Choi MS. 2006. Supplementation of whole persimmon leaf improves lipid profiles and suppresses body weight gain in rats fed high-fat diet. Food Chem Toxicol 44: 1875-1883. https://doi.org/10.1016/j.fct.2006.06.014
  63. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedmnan JM. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. https://doi.org/10.1038/372425a0
  64. Campfield LA, Smith F, Guisez Y, Devos R, Burn P. 1995. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546-549. https://doi.org/10.1126/science.7624778
  65. Kang JO, Kim KS. 1995. The effect of dry edible leaves feeding on serum lipids of hypercholesterolemic rats. J Korean Soc Food Nutr 24: 502-509.
  66. Kim NJ, Youn WG, Hong ND. 1994. Pharmacological effects of Lycium chinensis. Kor J Pharmacogn 25: 264-271.
  67. Kim HS, Park YS, Kim CI. 1998. Changes of serum lipid profiles after eating Lycii Fructus in rats fed high fat diet. Korean J Nutr 31: 263-270.
  68. Lee JS, Son HS, Maeng YS, Chang YK, Ju JS. 1994. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J Nutr 27: 819-827.
  69. Lee YH, Shin YM, Lee JE, Choi YS, Lee SY. 1990. In vitro screening of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor from plant extracts. Korean J Biotechnol Bioeng 6: 55-61.
  70. Kim SK, Lee HJ, Kim MK. 2001. Effect of water and ethanol extracts of persimmon leaf and green tea different conditions on lipid metabolism and antioxidative capacity in 12-month-old rats. Korean J Nutr 34: 499-512.
  71. Yumiki N, Susumu I, Yasuhide T. 2000. Effects of quercetin and rutin on serum and hepatic lipid concentrations, fecal steroid excretion and serum antioxidant properties. J Health Sci 46: 229-240. https://doi.org/10.1248/jhs.46.229
  72. Ganji V, Kuo J. 2008. Serum lipid responses to psyllium fiber: differences between pre- and post-menopausal, hypercholesterolemic women. Nutr J 26: 7-22.
  73. Ghasi S, Nwobodo E, Ofili JO. 2000. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J Ethnopharmacol 69: 21-25. https://doi.org/10.1016/S0378-8741(99)00106-3
  74. Lee JS, Bok SH, Jeon SM, Kim HJ, Do KM, Park YB, Choi MS. 2010. Antihyperlipidemic effects of buckwheat leaf and flower in rats fed a high-fat diet. Food Chem 119: 235-240. https://doi.org/10.1016/j.foodchem.2009.06.014
  75. Yang JL, Suh MJ, Song YS. 1996. Effects of dietary fibers on cholesterol metabolism in cholesterol-fed rats. J Korean Sco Food Nutr 25: 392-398.
  76. Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. 2009. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50: 3-21. https://doi.org/10.1194/jlr.R800031-JLR200
  77. Stanely Mainzen Prince P, Kannan NK. 2006. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. J Pharm Pharmacol 58: 1373-1383. https://doi.org/10.1211/jpp.58.10.0011
  78. Miettinen TA. 1987. Dietary fiber and lipids. Am J Clin Nutr 45: 1237-1242. https://doi.org/10.1093/ajcn/45.5.1237
  79. Billheimer DW, Grundy SM, Brown MS, Goldstein JL. 1983. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci USA 80: 4142-4158.
  80. Chau CF, Huang YL, Lin CY. 2004. Investigation of the cholesterol-lowering action of insoluble fibre derived from the peel of Citrus sinenesis L. cv. Liucheng. Food Chem 87: 361-366. https://doi.org/10.1016/j.foodchem.2003.12.006
  81. Shankardass K, Chuchmach S, Chelswick K, Stefanovich C, Spurr S, Brooks J, Tsai M, Saibil FG, Cohen LB, Edington JD. 1990. Bowel function of long-term tube-fed patients consuming formulae with and without dietary fiber. JPEN J Parenter Enteral Nutr 14: 508-512. https://doi.org/10.1177/0148607190014005508
  82. Toutouzas K, Drakopoulou M, Skoumas I, Stefanadis C. 2010. Advancing therapy for hypercholesterolemia. Expert Opin Pharmacother 11: 1659-1672. https://doi.org/10.1517/14656561003774080
  83. Satoshi I, Kimiko T, Kikue K, Hiroshi I, Miki M, Masahiro W, Noriko S, Mika K. 1998. Dried green leaf powders of Jews mellow (Corchorus), persimmon (Diosphyros kaki ) and sweet potato (Ipomoea batatas poir ) lower hepatic cholesterol concentration and increase fecal bile acid excretion in rats fed a cholesterol-free diet. Plant Foods for Hum Nutr 52: 55-65. https://doi.org/10.1023/A:1008031028484
  84. Park SY, Bok SH, Jeon SM, Park YB, Lee SJ, Jeong TS, Choi MS. 2002. Effect of rutin and tannic acid supplements on cholesterol metabolism in rats. Nutr Res 22: 283-295. https://doi.org/10.1016/S0271-5317(01)00398-0
  85. Chisaka T, Matsuda H, Kubomura Y, Mochizuki M, Yamahara J, Fujimura H. 1988. The effect of crude drugs on experimental hypercholesterolemia: mode of action of (-)-epigallocatechin gallate in tea leaves. Chem Pharm Bull 36: 227-233. https://doi.org/10.1248/cpb.36.227
  86. Matsumoto N, Okushio K, Hara Y. 1998. Effect of black tea polyphenols on plasma lipids in cholesterol-fed rats. J Nutr Sci Vitaminol 44: 337-342. https://doi.org/10.3177/jnsv.44.337
  87. Tebib K, Besancon P, Rouanet JM. 1994. Dietary grape seed tannin affect lipoproteins, lipoprotein lipases and tissue lipids in rats fed hypercholesterolemic diets. J Nutr 124: 2451-2457. https://doi.org/10.1093/jn/124.12.2451
  88. Hughes JS. 1991. Potential contribution of dry bean dietary fiber to health. Food Technology 9: 122-126.
  89. Lairon D. 2001. Dietary fibers and dietary lipids. In Advanced Dietary Fibre Technology. McCleary BV, Prosky L, eds. Blackwell Science, Oxford, UK. p 177-185.
  90. Marlett JA. 2001. Dietary fibre and cardiovascular disease. In Handbook of Dietary Fibre . Cho SS, Dreher ML, eds. Marcel Dekker, New York, NY, USA. p 17-30.
  91. Uberoi SK, Vadhera S, Soni GL. 1992. Role of dietary fiber from pulses and cereals as hypocholesterolemic and hypolipidemic agent. J Food Sci Technol 29: 281-283.
  92. Chang YY, Chou CH, Chiu CH, Yang KT, Lin YL, Weng WL, Chen YC. 2011. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J Agric Food Chem 59: 450-457. https://doi.org/10.1021/jf103167u
  93. Yoon JS, Cha YJ, Kim JS. 2008. The effects of Lycii fructus and Lycii folium on the liver in ovariectomized rat. Korean J Microscopy 38: 353-361.

Cited by

  1. Effects of Phytoplant Diets on Body Weight, Feces Production, Body Fat, and Serum Lipid Levels in High-fat Diet-induced Hyperlipidemic Rats vol.46, pp.4, 2014, https://doi.org/10.9721/KJFST.2014.46.4.477
  2. Effect of Drying Temperature on High Quality Functional Processed Products of Chinese Matrimony Vine vol.23, pp.6, 2015, https://doi.org/10.7783/KJMCS.2015.23.6.468
  3. Convenient Method for Selective Isolation of Immuno-Stimulating Polysaccharides from Persimmon Leaves vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.052
  4. Immunomodulatory Effects of Polysaccharides Derived from Persimmon Leaves on Cyclophosphamide-induced Immunosuppressed Mice vol.45, pp.5, 2013, https://doi.org/10.9721/KJFST.2013.45.5.636
  5. Betaine Supplementation Improves Beneficial Effects of Boxthorn (Lycium chinense Mill.) Leaf on Body Weight/Body Fat Increase and Plasma/Liver Triglycerides Accumulation in High-Fat Diet-Fed C57BL/6 Mice vol.38, pp.6, 2014, https://doi.org/10.1111/jfbc.12099
  6. Quality Characteristics of Mungbeanmook Added with Gugija (Lycii fructus) Infusion vol.18, pp.3, 2012, https://doi.org/10.14373/JKDA.2012.18.3.213
  7. Immuno-stimulating Activities of Polysaccharide Fractions Isolated from Persimmon Leaves vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.941
  8. 감나무 수령과 감꽃 기관에 따른 휘발성 향기성분 분석 vol.23, pp.4, 2014, https://doi.org/10.12791/ksbec.2014.23.4.321
  9. 구기자 분말을 첨가한 스펀지케이크의 품질특성 vol.21, pp.6, 2015, https://doi.org/10.20878/cshr.2015.21.6.006
  10. Oleaginous Yeast Rhodosporidium toruloides as a Tool for Rapid Evaluation of Anti-Obesity Candidates: Inhibitory Effect of Persimmon Leaf Fermentate on Lipid Accumulation vol.27, pp.10, 2017, https://doi.org/10.4014/jmb.1707.07062
  11. Effect of the Ethanol Extract of Common Buckwheat (Fagopyrum esculentum Mӧench) on Plasma Lipid Profile of High Fat Diet Rats vol.31, pp.4, 2011, https://doi.org/10.12719/ksia.2019.31.4.409
  12. 구기자나무의 재식밀도 및 예취높이가 가공용 잎 생산에 미치는 영향 vol.28, pp.2, 2020, https://doi.org/10.7783/kjmcs.2020.28.2.136
  13. 구기자 잎 생산에 알맞은 품종, 예취시기 및 생리활성 평가 vol.33, pp.5, 2011, https://doi.org/10.7732/kjpr.2020.33.5.436