Morita-Baylis-Hillman Route to 8,9,9a,10-Tetrahydrobenzo[b][1,8]naphthyridine$6(7 H)$-ones and $3,4,4 a, 5-T e t r a h y d r o d i b e n z o[b, g][1,8]$ naphthyridine- $1(2 H)$-ones ${ }^{\dagger}$

Sang-Hyun Ahn, Seung Soon Jang, Yong Hyun Kim, and Kee-Jung Lee*
Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea
*E-mail: leekj@hanyang.ac.kr
Received February 23, 2011, Accepted March 22, 2011

Key Words : Tetrahydrobenzo $[b][1,8]$ naphthyridine- $6(7 H)$-one, Tetrahydrodibenzo $[b, g][1,8]$ naphthyridine$1(2 \mathrm{H})$-one, Morita-Baylis-Hillman reaction, 2-Cyclohexen-1-one, Primary amine, $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction

1,8-Naphthyridine, tetrahydro-1,8-naphthyridine and its annelated derivatives are present in many natural and synthetic compounds. ${ }^{1}$ 1,8-Naphthyridine derivatives show a broad range of interesting physiological activities such as antiinflammatory, ${ }^{2,3}$ analgesic, ${ }^{2}$ antiaggressive, ${ }^{3}$ anticancer, ${ }^{4}$ antibacterial, ${ }^{5}$ antitumor, ${ }^{6}$ antihypertensive, ${ }^{7}$ antiallergitic, ${ }^{8}$ and antimalarial. ${ }^{9}$ Several synthetic approaches have been developed to form the 1,8 -naphthyridine derivatives, ${ }^{10}$ but due to their great importance, the development of new synthetic methods remain an active research area.
The Morita-Baylis-Hillman (MBH) reaction ${ }^{11}$ has attracted the attention of organic chemists in recent years. This reaction provides synthetically useful multi-functional molecules which have been successfully employed in the preparation of various heterocyclic systems. ${ }^{12}$ MBH adducts have already been used as substrates for the synthesis of 1,8-naphthyridine skeletons. Basavaiah and Reddy reported an elegant strategy to prepare tri and tetracyclic frameworks containing 1,8-naphthyridine-2-one moiety from the MBH adduct of 2nitrobenzaldehyde and acrylonitrile. ${ }^{13} \mathrm{Su}$ used an acetylated MBH adduct derived from 2-chloroquinoline-3-carboxaldehyde with acrylic acid esters as a substrate for the syntheses of benzo $[b][1,8]$ naphthyridine-3-carboxylate derivatives. ${ }^{14}$ Rao and co-worker have reported synthesis of $[1,8]$ naphthyridine-3-carboxylates from the acetates of MBH adducts, derived from substituted 2-chloropyridine-3-carboxaldehydes, via the reaction with TsNH_{2} (or $\mathrm{NH}_{4} \mathrm{OAc}$) followed by cyclization or via the treatment with NaN_{3} followed by reductive cyclization. ${ }^{15}$ Coelho also reported highly diastereoselective access to 3,4 -substituted tetrahydro-1,8-naphthyridines from a silylated MBH adduct derived from 2-chloropyridine-3carboxaldehyde or 2-chloroquinoline-3-carboxaldehyde with acrylic acid esters. ${ }^{16}$

Meanwhile, Kim and co-workers reported ${ }^{17}$ a transformation of the MBH acetates, obtained from 2-halobenzaldehyde or 2-chloroquinoline-3-carboxaldehyde with 2-cyclohexen-1-one, with a base into 2-arylmethylphenol or 2-(quinoline-$3-y l) m e t h y l p h e n o l$, respectively. This reaction proceeded by a base assisted elimination of acetic acid and following ketoenol tautomerization and aromatization by 1,5-hydrogen

[^0]transfer. Although the acetylated MBH adduct between 2-cyclohexen-1-one and 2-chloropyridine-3-carboxaldehyde or 2-chloroquinoline-3-carboxaldehyde are known, ${ }^{17,18}$ but the reaction of acetates with primary amines was not studied. In this note we disclose a facile synthesis of $8,9,9 \mathrm{a}, 10$ tetrahydrobenzo $[b][1,8]$ naphthyridine- $6(7 H)$-ones and $3,4,4 \mathrm{a}, 5$ tetrahydrodibenzo $[b, g][1,8]$ naphthyridine- $1(2 H)$-ones via the successive $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ elimination strategy.
The key starting material MBH adduct $\mathbf{3}$ was prepared by the reaction of 2-chloropyridine-3-carboxaldehyde (1) with 2-cyclohexen-1-one (2) in the presence of DMAP in aqueous THF at room temperature in 70% yield following the earlier reported procedure. ${ }^{18}$ Acetylation of $\mathbf{3}$ with $\mathrm{Ac}_{2} \mathrm{O} /$ DMAP gave acetate $\mathbf{4}$ in 96% yield. The known MBH acetate 7 were prepared in similar manner using 2-chloroquinoline-3carboxaldehyde. ${ }^{17}$ The reaction between MBH acetate 4 and several primary amines or $\mathrm{NH}_{4} \mathrm{OAc}$ in THF in the presence of triethylamine at reflux temperature for $2-7 \mathrm{~h}$ afforded the desired 8,9,9a, 10-tetrahydrobenzo $[b][1,8]$ naphthyridine- $6(7 H)$ ones $\mathbf{6 a - g}$ in $35-57 \%$ yields (Table 1, Scheme 1). ${ }^{19}$ Also, we examined the same reaction with an aromatic amine, aniline, however, the corresponding naphthyridine $\mathbf{6 h}$ was not formed in any trace amount, only starting acetate 4 was recovered. Under the same reaction conditions the known

Table 1. Synthesis of Tetrahydrobenzo $[b][1,8]$ naphthyridine- $6(7 H)$ ones 6 and Tetrahydrodibenzo $[b, g][1,8]$ naphthyridine- $1(2 H)$-ones $\mathbf{8}^{a}$

Entry	Acetate	Time (h)	R	Product	Yield (\%) b
1	4	2	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	$\mathbf{6 a}$	44
2	4	2	PhCH_{2}	$\mathbf{6 b}$	41
3	4	2	Pr	$\mathbf{6 c}$	42
4^{c}	4	7	iso- Pr	$\mathbf{6 d}$	35
5^{c}	4	5	cyclo- Pr	$\mathbf{6 e}$	37
6^{c}	4	6	Et	$\mathbf{6 f}$	57
7	4	3	H	$\mathbf{6 g}$	40
8	4	24	Ph	$\mathbf{6 h}$	-
9	7	5	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	$\mathbf{8 a}$	48
10	7	4	PhCH	8	$\mathbf{8 b}$
11^{c}	7	14	Et	$\mathbf{8 c}$	34
12	7	7	H	$\mathbf{8 d}$	33

[^1]

8a: $\mathrm{R}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, \mathbf{8 b}: \mathrm{R}=\mathrm{PhCH}_{2}$ 8c: $R=E t, 8 d: R=H$
Scheme 2
acetate 7 gave 3,4,4a,5-tetrahydrodibenzo $[b, g][1,8]$ naphthyridine$1(2 \mathrm{H})$-ones $\mathbf{8 a - d}$ in $33-48 \%$ yields (Table 1, Scheme 2). ${ }^{19}$ It is worth mentioning that the reactions of the acetates 4 and 7 with isopropyl-, cyclopropyl-, and ethyl amines having low boiling points were achieved with adding same amounts of these amines (1.5 equiv) after refluxing for 2 h as shown in entries $4,5,6$, and 11 of Table 1 . With the aid of $\mathrm{Et}_{3} \mathrm{~N}$ the amine undergoes Michael addition to the exocyclic $\mathrm{C}=\mathrm{C}$ bond of acetate $\mathbf{4}$ and subsequent migration of the $\mathrm{C}=\mathrm{C}$ bond with the simultaneous ejection of the acetic acid to give the allyl amine 5. The intermediate could not be isolated, and subsequently amine moiety can attack in an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction at $C(2)$ of the pyridine ring followed by elimination of chloride ion to give 6 .
The structures of 6 were elucidated by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and mass spectral analyses. In a DEPT experiment of $\mathbf{6 a}$, four CH_{2} peaks ($\delta=19.7,30.4,38.5,46.7$) and seven CH peaks (δ $=58.5,113.5,113.9,128.5,129.4,137.0,150.2$) were observed, and we could exclude the possible regioisomeric structure about double bond.
In conclusion, we have successfully elaborated a simple synthetic method for tri and tetracyclic frameworks containing 1,8-naphthyridine moiety from the Morita-Baylis-Hillman acetates and primary amines or $\mathrm{NH}_{4} \mathrm{OAc}$ through the tandem $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.

Experimental Section

2-[(2-Chloropyridine-3-yl)(hydroxyl)methyl]cyclohex-2-en-1-one (3). A mixture of 2-chloropyridine-3-carboxaldehyde $(1,1.42 \mathrm{~g}, 10 \mathrm{mmol})$, and $\operatorname{DMAP}(0.14 \mathrm{~g}, 2 \mathrm{mmol})$ in 10 mL of aqueous THF ($1: 1$) was stirred at rt for 24 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent was evaporated under
reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (1:1) to produce $3(1.66 \mathrm{~g}, 70 \%)$ as a white solid that was recrystallized ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}$); mp $87-88{ }^{\circ} \mathrm{C}$; IR (KBr): 3392, 1671, 1567, 1405 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97-2.06(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.38-2.53 (m, 4H, $2 \times \mathrm{CH}_{2}$), 3.91 (br s, $1 \mathrm{H}, \mathrm{OH}$), 5.83 (s, 1H, CH), $6.59(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.33(\mathrm{dd}, J=7.6$ and $4.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $8.02(\mathrm{dd}, J=7.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 8.34 (dd, $J=4.7$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3,25.7,38.4,68.8,122.7$, 135.5, 137.4, 138.4, 148.5, 148.6, 149.3, 200.6; MS m/z 237 $\left(\mathrm{M}^{+}, 1\right), 236$ (3), 203 (14), 202 (100), 184 (18). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{2}$: C, $60.64 ; \mathrm{H}, 5.09 ; \mathrm{N}, 5.89$. Found: C, 60.38; H, 5.25; N, 5.64.

2-[(Acetoxy)(2-chloropyridine-3-yl)methyl]cyclohex-2-en-1-one (4). A mixture of $3(1.19 \mathrm{~g}, 5 \mathrm{mmol}$), acetic anhydride ($0.71 \mathrm{~mL}, 7.5 \mathrm{mmol}$) and DMAP $(0.11 \mathrm{~g}, 1$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was stirred at rt for 1 h . The mixture was neutralized with a saturated aqueous NaHCO_{3} solution. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 30 \mathrm{~mL})$ and the organic layers were dried over MgSO_{4} and concentrated in vacuo. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc ($1: 1$) to produce $4(1.33 \mathrm{~g}, 96 \%$) as a white solid that was recrystallized ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}$); mp 134-135 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr} \mathrm{):} \mathrm{1744}$, 1676, 1567, 1410, 1370, $1226 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right)$ § 1.99-2.07 (m, 2H, CH2), $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43-$ $2.49\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 6.84-6.86(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 7.27(\mathrm{dd}$, $J=4.7$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.78 (dd, $J=7.6$ and 1.8 $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), 8.34 (dd, $J=4.7$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,22.3,25.9$, $38.3,69.2,122.3,132.9,135.7,137.4,148.8,149.5,149.8$, 169.2, 196.6; MS $m / z 280$ (2), 244 (8), 236 (6), 202 (45), 184 (100), 140 (14), 123 (10). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3}$: C, 60.11; H, 5.04; N, 5.01. Found: C, 59.98; H, 4.84; N, 4.86.

8,9,9a,10-Tetrahydrobenzo $[b][1,8]$ naphthyridine-6(7H)-

 ones (6).General Procedure: To a stirred solution of MBH acetate $4(1 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added either $\mathrm{RNH}_{2}(1.5$ $\mathrm{mmol})$ or. $\mathrm{NH}_{4} \mathrm{OAc}(1.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.31 \mathrm{~mL}, 2.2$ mmol) at rt . The reaction mixture was heated at reflux temperature for 2-7 h. In the case of isopropyl-, cyclopropyl-, and ethyl amines 1.5 mmol of amines was added again after refluxing for 2 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$
and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting hexane-EtOAc (2:1) to produced 6 as an oil.

10-(p-Methoxybenzyl)-8,9,9a,10-tetrahydrobenzo[b] [1,8]naphthyridine- $\mathbf{6}(\mathbf{7 H})$-one (6a): Reaction time: 2 h ; yield: 44%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $1683,1610,1555,1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.84-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22-$ $2.53\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.56$ and $5.20(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.70-4.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.47$ (dd, $J=7.3$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.81-6.87(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.08(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.96 (dd, $J=5.0$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.7,30.4,38.5,46.7,55.2,58.5$, $113.5,113.9,114.3,128.5,129.4,130.8,131.6,137.0,150.2$, 156.9, 158.5, 198.4; MS m/z 278 (26), 277 (100), 199 (46), 183 (12), 170 (13), 152 (10). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.98 ; H, 6.29; N, 8.74. Found: C, 74.76; H, 6.01; N, 9.04.

10-Benzyl-8,9,9a, 10-tetrahydrobenzo $[b][1,8]$ naphthyridine-6(7H)-one (6b): Reaction time: 2 h ; yield: 41%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1684, 1602, 1556, 1450, $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.90-1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28-2.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, 4.71 and $5.16\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}\right.$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.73-4.79(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 6.48(\mathrm{dd}, J=7.3$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.10(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.17-7.20(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.23-7.32(\mathrm{~m}$, 4 H , aromatic), 7.96 (dd, $J=5.0$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.7,30.6,38.5,47.5,58.8,113.6$, $114.2,126.8,127.2,128.5,130.8,131.6,137.0,137.6,150.2$, 156.9, 198.4; MS m/z 246 (18), 245 (100), 190 (11), 181 (32). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$: C, 78.59; H, 6.25; N, 9.65. Found: C, 78.25; H, 6.09; N, 9.84.
10-Propyl-8,9,9a,10-tetrahydrobenzo $[b][1,8]$ naphthyridine$\mathbf{6 (7 H)}$-one ($\mathbf{6 c}$): Reaction time: 2 h ; yield: 42%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1684, 1618, 1554, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.95\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66-1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.03-$ $2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.59\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 3.27-3.37$ and 3.57-3.67 (m, each $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.77-4.83 (m, 1H, CH), $6.41(\mathrm{dd}, J=7.0$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.05(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$), 7.10 (dd, $J=7.0$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.96 (dd, $J=5.0$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.4,19.3,19.8,30.8,38.6,46.2,58.7$, $112.9,114.5,131.2,131.3,136.7,150.2,156.8,198.4 ; \mathrm{MS}$ $m / z 242\left(\mathrm{M}^{+}, 35\right), 241$ (16), 240 (27), 214 (32), 213 (26), 199 (36), 187 (42), 186 (100), 172 (24), 171 (25), 170 (37), 144 (43). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.35 ; \mathrm{H}, 7.49 ; \mathrm{N}$, 11.56. Found: C, 74.56 ; H, 7.40; N, 11.38.

10-(iso-Propyl)-8,9,9a,10-tetrahydrobenzo $[b][1,8]$ naphthyridine-6(7H)-one (6d): Reaction time: 7 h ; yield: 35%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1692,1629,1591,1555 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.41(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.89-2.17 (m, 2H, CH2), 2.27-2.57 (m, 4H, $\left.2 \times \mathrm{CH}_{2}\right), 4.32-4.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.84-4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.34$ (dd, $J=7.0$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 6.99-7.02(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.90(\mathrm{dd}, J=5.0$ and 2.1 Hz , 1 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.7,19.1$, $21.2,33.7,38.4,48.7,58.0,112.3,114.1,128.8,133.6$,
136.3, 149.5, 155.9, 199.2; MS m/z $242\left(\mathrm{M}^{+}, 31\right), 214$ (47), 200 (20), 199 (28), 188 (32), 186 (82), 145 (32), 144 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.35$; H, 7.49; N, 11.56. Found: C, 74.16; H, 7.24; N, 11.29.

10-Cyclopropyl-8,9,9a,10-tetrahydrobenzo $[b][1,8]$ naphthyridine-6(7H)-one (6e): Reaction time: 5 h ; yield: 37%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1688,1628,1605,1556 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.60-0.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.84-0.92(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.11-1.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.98-2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.36-2.62 (m, 4H, $2 \times \mathrm{CH}_{2}$), 4.68-4.73 (m, 1H, CH), 6.49 (dd, $J=7.3$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), 7.11 (dd, $J=7.3$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 8.04 (dd, $J=5.0$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 6.5,11.8,19.3,27.3,30.3,38.7,60.3,113.6,115.4$, 129.0, 133.9, 136.2, 149.5, 157.1, 199.1; MS m/z $240\left(\mathrm{M}^{+}\right.$, 100), 239 (81), 223 (94), 213 (79), 211 (85), 199 (42), 197 (49), 184 (50), 183 (60), 182 (34), 181 (64), 169 (68), 168 (43). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.97 ; \mathrm{H}, 6.71 ; \mathrm{N}$, 11.66. Found: C, 74.82 ; H, 6.64; N, 11.75.

10-Ethyl-8,9,9, ,10-tetrahydrobenzo $[b][1,8]$ naphthyridine$\mathbf{6 (7 H)}$)one (6f): Reaction time: 6 h ; yield: 57%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1683, 1602, 1555, $1401 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.10\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.96-2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29-$ $2.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 3.34-3.46$ and $3.64-3.76(\mathrm{~m}$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.70-4.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.36(\mathrm{dd}, J=7.0$ and 5.0 $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), $7.00(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.05 (dd, $J=7.3$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.91 (dd, $J=5.0$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.5$, 19.8, 30.7, 38.6, 39.0, 58.2, 113.0, 114.8, 131.2, 136.8, 145.4, 150.2, 156.6, 198.4; MS m/z 228 ($\mathrm{M}^{+}, 100$), 227 (88), 226 (34), 213 (18), 211 (28), 201 (40), 199 (94), 197 (27), 181 (31), 169 (22). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.66$; H , 7.06 ; N, 12.27. Found: C, 73.41; H, 7.29; N, 12.05.

8,9,9a,10-Tetrahydrobenzo $[b][1,8]$ naphthyridine- $6(7 \boldsymbol{H})$ one ($\mathbf{6 g})^{20}$: Reaction time: 3 h ; yield: 40%; yelleow solid; mp 118-119 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3221, 1675, 1617, 1575, 1504 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.74-2.62(\mathrm{~m}, 6 \mathrm{H}, 3 \times$ CH_{2}), 4.86-4.92 (m, 1H, CH), $5.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.51(\mathrm{dd}, J=$ 7.3 and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.21 (dd, $J=7.3$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.86 (dd, $J=5.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $19.8,31.9,39.0,53.7,114.3,114.8,131.0,131.1,137.0$, 149.6, 157.7, 198.0; MS m/z $200\left(\mathrm{M}^{+}, 38\right), 199$ (44), 198 (67), 197 (11), 171 (41), 170 (99), 169 (53), 145 (43), 144 (100), 143 (28), 130 (25). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$, $71.98 ;$ H, 6.04; N, 13.99. Found: C, 71.72; H, 5.97; N, 13.87.

3,4,4a,5-Tetrahydrodibenzo $[b, g][1,8]$ naphthyridine-1 (2H)-ones (8).

General Procedure: To a stirred solution of MBH acetate $7^{17}(1 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added $\mathrm{RNH}_{2}(1.5 \mathrm{mmol})$ or $\mathrm{NH}_{4} \mathrm{OAc}(1.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.31 \mathrm{~mL}, 2.2 \mathrm{mmol})$ at rt . The reaction mixture was heated at reflux temperature for $4-$ 14 h . In the case of ethyl amine 1.5 mmol of amine was added again after refluxing for 2 h . The work-up procedure was the same as described above to give $\mathbf{8}$ as an oil.

5-(p-Methoxybenzyl)-3,4,4a,5-tetrahydrodibenzo $[b, g]$ [1,8]naphthyridine-1(2H)-one (8a): Reaction time: 5 h ;
yield: 48%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $1687,1614,1557,1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32-$ $2.58\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.63$ and $5.54(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}$, each $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.70-4.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.81-$ $6.86(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.11-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ and aromatic), $7.26-7.28(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.41-7.54(\mathrm{~m}, 4 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.8,30.7,38.8,46.7,55.2$, 58.8, 113.8, 116.8, 122.6, 124.1, 126.4, 127.6, 128.9, 129.1, $129.9,130.3,135.0,136.4,149.1,154.3,158.5,198.8$; MS $m / z 339$ (4), 325 (4), 281 (14), 265 (32), 249 (47), 210 (56), 208 (100), 193 (10), 191 (16), 163 (14), 146 (16). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $77.81 ; \mathrm{H}, 5.99 ; \mathrm{N}, 7.56$. Found: C, 77.65; H, 6.12; N, 7.39.

5-Benzyl-3,4,4a,5-tetrahydrodibenzo $[b, g][1,8]$ naphthyridine$\mathbf{1 (2 H)}$-one (8b): Reaction time: 4 h ; yield: 44%; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $1688,1615,1558,1494,1447 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.83-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31-2.57\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, $4.70-4.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.80$ and $5.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, each 1 H , CH_{2}), $7.11-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ and aromatic), $7.22-7.35(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $7.40-7.54$ (m, 4 H , aromatic); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 19.8,30.9,38.8,47.6,59.2,116.8,122.6,124.1$, $126.4,126.9,127.5,127.6,128.5,129.2,130.4,135.0,136.5$, 138.1, 149.1, 154.3, 198.8; MS m/z 241 (17), 240 (100), 226 (26), 225 (71), 197 (10), 182 (20), 166 (19), 165 (27), 154 (10), 153 (14). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 81.15$; H, 5.92 ; N, 8.23. Found: C, 80.92; H, 5.74; N, 7.96.

5-Ethyl-3,4,4a,5-tetrahydrodibenzo $[b, g][1,8]$ naphthyridine$\mathbf{1 (2 H)}$-one (8c): Reaction time: 14 h ; yield: 39%; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1688, 1615, 1594, 1556, $1495 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.26\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93-2.03(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.09-2.64 (m, 4H, $2 \times \mathrm{CH}_{2}$), 3.60-3.71 and 3.81-3.92 (m, each $1 \mathrm{H}, \mathrm{CH}_{2}$), $4.76-4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.08-7.13(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}$ and aromatic), $7.41-7.55\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.1,19.9,31.4,38.9,39.8,59.2$, $117.1,122.3,123.8,126.4,127.6,129.4,130.2,134.8$, 136.1, 149.4, 153.9, 198.8; MS m/z 278 ($\mathrm{M}^{+}, 39$), 276 (24), 251 (41), 249 (44), 224 (35), 222 (100), 194 (38). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.67 ; \mathrm{H}, 6.52$; N, 10.06. Found: C, 77.48; H, 6.34; N, 9.82.

3,4,4a,5-Tetrahydrodibenzo $[b, g][1,8]$ naphthyridine$\mathbf{1}(\mathbf{2 H})$-one ($\mathbf{8 d})^{20}$: Reaction time: 7 h ; yield: 33%; yellow solid; mp 189-191 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3228, 1683, 1626, 1593, 1574 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01-2.68(\mathrm{~m}, 6 \mathrm{H}$, $3 \times \mathrm{CH}_{2}$), $4.90-4.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.15-$ $7.21(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.25(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.48-7.54$ (m, 3H, aromatic), $7.62\left(\mathrm{~s}, 1 \mathrm{H}\right.$, aromatic); ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 19.8,32.4,39.3,54.3,117.2,123.0,124.8,125.5$, 128.1, 129.8, 130.8, 134.3, 136.9, 148.5, 155.3, 198.0; MS m/z 251 (94), 249 (100), 221 (9), 208 (14), 207 (19), 193 (14). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$: C, $76.78 ; \mathrm{H}, 5.64$; $\mathrm{N}, 11.19$. Found: C, 77.04; H, 5.41; N, 11.32.

References

1. (a) For reviews, see: Ivanov, A. S.; Tugusheva, N. Z.; Granik, V. G. Russ. Chem. Rev. 2005, 74, 915-936. (b) Litvinov, V. P. Russ. Chem. Rev. 2004, 73, 637-669. (c) Litvinov, V. P.; Roman, S. V.; Dyachenko, V. D. Russ. Chem. Rev. 2000, 69, 201-220. (d) Allen,
C. F. H. Chem. Rev. 1950, 47, 275-305.
2. Roma, G.; Grossi, G.; Braccio, M. D.; Piras, D.; Ballabeni, V.; Tognolini, M.; Bertoni, S.; Barocelli, E. Eur. J. Med. Chem. 2008, 43, 1665-1680.
3. Roma, G.; Braccio, M. D.; Grossi, G.; Mattioli, F.; Ghia, M. Eur. J. Med. Chem. 2000, 35, 1021-1035.
4. Atanasova, M.; Ilieva, S.; Galabov, B. Eur. J. Med. Chem. 2007, 42, 1184-1192.
5. Kuramoto, Y.; Ohshita, Y.; Yoshida, J.; Yazaki, A.; Shiro, M.; Koike, T. J. Med. Chem. 2003, 46, 1905-1917.
6. Chen, K.; Kuo, S.-C.; Hsieh, M.-C.; Mauger, A.; Lin, C. M.; Hamel, E.; Lee, K.-H. J. Med. Chem. 1997, 40, 2266-2275.
7. Ferrarini, P. L.; Mori, C.; Badawneh, M.; Calderone, V.; Greco, R.; Manera, C.; Martinelli, A.; Nieri, P.; Saccomanni, G. Eur. J. Med. Chem. 2000, 35, 815-826.
8. Sherlock, M. H.; Kaminski, J. J.; Tom, W. C.; Lee, J. F.; Wong, S.C.; Kreutner, W.; Bryant, R. W.; Mcphail, A. T. J. Med. Chem. 1988, 31, 2108-2121.
9. Barlin, G. B.; Tan, W.-L. Aust. J. Chem. 1984, 37, 1065-1073.
10. (a) Schramm, O. G.; Oeser, T.; Müller, T. J. J. J. Org. Chem. 2006, 71, 3494-3500. (b) Zong, R.; Zhou, H.; Thummel, R. P. J. Org. Chem. 2008, 73, 4334-4337. (c) Litvinov, V. P. In Advanced Heterocyclic Chemistry; Elsvier: San Diego, 2006; Vol. 91, pp 189-300. (d) Lahue, B. R.; Lo, S.-M.; Wan, Z.-K.; Woo, G. H. C.; Snyder, J. K. J. Org. Chem. 2004, 69, 7171-7182.
11. For reviews of the Morita-Baylis-Hillman reaction, see: (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653-4670. (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 80018062. (c) Ciganek, E. Org. React. 1997, 51, 201-350. (d) Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049-3052. (e) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (f) Kataoka, T.; Kinoshita, H. Eur. J. Org. Chem. 2005, 45-58. (g) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581-1588. (h) Singh, V.; Batra, S. Tetrahedron 2008, 64, 45114574. (i) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. (j) Ma, G.-N.; Jiang, J.-J.; Shi, M.; Wei, Y. Chem. Coттии. 2009, 5496-5514. (k) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674.
12. For our recent examples, see: (a) Hong, W. P.; Lim, H. N.; Park, H. W.; Lee, K.-J. Bull. Korean Chem. Soc. 2005, 26, 655-657. (b) Hong, W. P.; Lee, K.-J. Synthesis 2005, 33-38. (c) Hong, W. P.; Lee, K.-J. Synthesis 2006, 963-968. (d) Song, Y. S.; Lee, K.-J. J. Heterocycl. Chem. 2006, 43, 1721-1724. (e) Ji, S.-H.; Hong, W. P.; Ko, S. H.; Lee, K.-J. J. Heterocycl. Chem. 2006, 43, 799-801. (f) Lim, H. N.; Ji, S.-H.; Lee, K.-J. Synthesis 2007, 2454-2460. (g) Song, Y. S.; Lee, K.-J. Synthesis 2007, 3037-3043. (h) Lim, H. N.; Song, Y. S.; Lee, K.-J. Synthesis 2007, 3376-3384. (i) Jeon, K. J.; Lee, K.-J. J. Heterocycl. Chem. 2008, 45, 615-619. (j) Ahn, S.-H.; Lim, H. N.; Lee, K.-J. J. Heterocycl. Chem. 2008, 45, 1701-1706. (k) Park, S. P.; Song, Y. S.; Lee, K.-J. Tetrahedron 2009, 65, 47034708. (l) Han, E.-G.; Kim, H. J.; Lee, K.-J. Tetrahedron 2009, 65, 9616-9625. (m) Park, S. P.; Ahn, S.-H.; Lee, K.-J. Tetrahedron 2010, 66, 3490-3498. (n) Ahn, S.-H.; Jang, S. S.; Han, E.-G.; Lee, K.-J. Synthesis 2011, 377-386.
13. Basavaiah, D.; Reddy, K. R. Tetrahedron 2010, 66, 1215-1219.
14. Zhong, W.; Lin, F.; Chen, R.; Su, W. Synthesis 2009, 2333-2340.
15. Narender, P.; Ravinder, M.; Sadhu, P. S.; Raju, B. C.; Ramesh, C.; Rao, V. J. Helv. Chim. Acta 2009, 92, 959-966.
16. Rodrigues, M. T., Jr.; Gomes, J. C.; Smith, J.; Coelho, F. Tetrahedron Lett. 2010, 51, 4988-4990.
17. Lee, K. Y.; Na, J. E.; Kim, J. N. Bull. Korean Chem. Soc. 2003, 24, 409-410.
18. Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B. A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U. S. N.; Rao, V. J. Bioorg. Med. Chem. 2006, 14, 4600-4609.
19. Some other intractable, unidentified decomposition products were also formed.
20. Aqueous THF (20%) was used as a solvent.

[^0]: ${ }^{\dagger}$ This paper is dedicated to Professor Eun Lee on the occasion of his honourable retirement.

[^1]: ${ }^{a}$ The reaction was performed with acetate (1 mmol), amine (1.5 or 3 $\mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(2.2 \mathrm{mmol})$ in THF at reflux temperature. ${ }^{b}$ Isolated yields. ${ }^{c} 3 \mathrm{mmol}$ of amine was used.

