DOI QR코드

DOI QR Code

Practical Synthesis of 1,1-Difluoro- or 1-Fluoroalkenes from 2,2,2-Trifluoroacetophenone Derivatives

  • 투고 : 2011.03.16
  • 심사 : 2011.05.26
  • 발행 : 2011.08.20

초록

Since the discovery of the fact that compounds bearing a vinylic fluoride moiety often exhibit remarkable biological activities such as enzyme inhibitors, many synthetic methods for fluorine-substituted vinylic compounds have been developed. The synthesis of selectively fluorinated building blocks, such as arylsubstituted fluoro-alkenes, also has become an area of interest in recent years. Herein we describe a novel and practical method for the synthesis of 1,1-difluoro- and 1-fluoroalkenes starting from easily accessible trifluoroacetophenone derivatives. Various 1,1-difluoro- and 1-fluoroalkenes were prepared by the reaction of the corresponding tosyl hydrazones that were derived from trifluoroacetophenone derivatives by treating with alkyl or aryllithium reagents via addition-elimination and single electron transfer (SET) mechanism.

키워드

참고문헌

  1. Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119-6146. https://doi.org/10.1021/cr030143e
  2. Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2004, 44, 214- 231.
  3. Surya Prakash, G. K.; Hu, J. Acc. Chem. Res. 2007, 40, 921-930. https://doi.org/10.1021/ar700149s
  4. Pacheco, M. C.; Purser, S.; Gouverneur, V. Chem. Rev. 2008, 108, 1943-1981. https://doi.org/10.1021/cr068410e
  5. Belanger, E.; Cantin, K.; Messe, O.; Tremblay, M.; Paquin, J. -F. J. Am. Chem. Soc. 2007, 129, 1034-1035. https://doi.org/10.1021/ja067501q
  6. Belanger, E.; Houze, C.; Guimond, N.; Cantin, K.; Paquin, J. -F. Chem. Commun. 2008, 3251-3253.
  7. Smart, B. E. J. Fluorine Chem. 2001, 109, 3-11. https://doi.org/10.1016/S0022-1139(01)00375-X
  8. Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013-1029. https://doi.org/10.1016/j.jfluchem.2006.06.007
  9. Begue, J. -P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992-1012. https://doi.org/10.1016/j.jfluchem.2006.05.006
  10. Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881-1886. https://doi.org/10.1126/science.1131943
  11. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320-330. https://doi.org/10.1039/b610213c
  12. Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003-1022.
  13. Babudri, F.; Cardone, A.; Farinola, G. M.; Martinelli, C.; Mendichi, R.; Naso, F.; Striccoli, M. Eur. J. Org. Chem. 2008, 1977-1982.
  14. Sciotti, R. J.; Pliushchev, M.; Wiedeman, P. E.; Balli, D.; Flamm, R.; Nilius, A. M.; Marsh, K.; Stolarik, D.; Jolly, R.; Ulrich, R.; Djuric, S. W. Bioorg. Med. Chem. Lett. 2002, 12, 2121- 2123. https://doi.org/10.1016/S0960-894X(02)00352-9
  15. Van der Veken, P.; Senten, K.; Kertesz, I.; De Meester, I.; Lambeir, A. -M.; Maes, M. -B.; Scharpe, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768-1780. https://doi.org/10.1021/jm0495982
  16. Niida, A.; Tomita, K.; Mizumoto, M.; Tanigaki, H.; Terada, T.; Oishi, S.; Otaka, A.; Inui, K. -i.; Fuji, N. Org. Lett. 2006, 8, 613-616. https://doi.org/10.1021/ol052781k
  17. Alloatti, D.; Giannini, G.; Cabri, W.; Lustrati, I.; Marzi, M.; Ciacci, A.; Gallo, G.; Tinti, M. O.; Marcellini, M.; Riccioni, T.; Guglielmi, M. B.; Carminati, P.; Pisano, C. J. Med. Chem. 2008, 51, 2708-2721. https://doi.org/10.1021/jm701362m
  18. Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem., Int. Ed. 2007, 46, 1290-1292. https://doi.org/10.1002/anie.200604246
  19. Burton, D. J.; Greenlimb, P. E.; J. Org. Chem. 1975, 40, 2796. https://doi.org/10.1021/jo00907a020
  20. Cox, D. G.; Gumsamy, N.; Burton, D. J. J. Am. Chem. Soc. 1985, 107, 2811. https://doi.org/10.1021/ja00295a046
  21. Eddaria, S. Francesch, C.; Mestdagh, H.; Roland, C. Tetrahedron Lett. 1990, 31, 4449. https://doi.org/10.1016/S0040-4039(00)97645-7
  22. McCarthy, J. R.; Mattews, D. P.; Stemerick, D. M.; Huber, E. W.; Bay, P.; Lippert, B. J.; Snyder, R. D.; Sunkara, P. S. J. Am. Chem. Soc. 1991, 113, 7439 https://doi.org/10.1021/ja00019a061
  23. Martin, S.; Sauvtre, R.; Normant, J.-F. Tetrahedron Lett. 1982, 23, 4329. https://doi.org/10.1016/S0040-4039(00)85592-6
  24. Tellier, F.; Sauvtre, R.; Normant, J.-F. J. Organomet. Chem.1985, 292, 19. https://doi.org/10.1016/0022-328X(85)87317-4
  25. Matthews, D. P.; Miller, S. C.; Jarri, E. T.; Sabol, J. S.; McCarthy, J. R. Tetrahedron Lett. 1993, 34, 3057. https://doi.org/10.1016/S0040-4039(00)93378-1
  26. Tius, M. A.; Kawakami, J. K. Synlett 1993, 207.
  27. McDonald, I. A.; Bey, P. Tetrahedron Lett. 1985, 26, 3807. https://doi.org/10.1016/S0040-4039(00)89256-4
  28. Reutrakul, V.; Rukachaisirikul, V. Tetrahedron Lett. 1983, 24, 725. https://doi.org/10.1016/S0040-4039(00)81509-9
  29. Purrington, S. T.; Pittman, J. H. Tetrahedron Lett. 1987, 28, 3901. https://doi.org/10.1016/S0040-4039(00)96415-3
  30. Boys, M. L.; Colington, E. W,; Finch, H.; Swanson, S.; Whitehead, J. F. Tetrahedron Lett. 1988, 29, 3365. https://doi.org/10.1016/0040-4039(88)85163-3
  31. Vinson, W. A.; Prickett, K. S.; Spanic, B.; Ortiz de Montellano, P. R. J. Org. Chem. 1983, 48, 4661. https://doi.org/10.1021/jo00172a042
  32. Brunner, J.; Senn, H.; Richards, F. M. J. Biol. Chem. 1980, 255, 3313.
  33. Balwin, L. E.; Coates, J. E.; Halpern, J. B.; Moloney, M. G.; Pratt, A. J. Biochem. J. 1989, 261, 197. https://doi.org/10.1042/bj2610197
  34. Nassal, M. J. Am. Chem. Soc. 1994, 106, 7540.
  35. Fernandez-Gacio, A.; Mourino, A. Eur. J. Org. Chem. 2002, 2529
  36. Bamford, W. R.; Stevens, T. S. J. Chem. Soc. 1952, 4735-4740. https://doi.org/10.1039/jr9520004735
  37. Schenck, H. A.; Lenkowski, P. W.; Mukherjee, I. C.; Ko, S. H.; Stables, J. P.; Patel, M. K.; Brown, M. L. Bioorg. Med. Chem. 2004, 12, 979-993. https://doi.org/10.1016/j.bmc.2003.12.011
  38. Poszavacz, L.; Simig, G. J. Heterocycl. Chem. 2000, 37, 343-348. https://doi.org/10.1002/jhet.5570370219
  39. Denton, J. R.; Sukumaran, D.; Davies, H. M. Org. Lett. 2007, 9, 2625-2628 https://doi.org/10.1021/ol070714f
  40. Strekowski, L.; Patterson, S,E.; Janda, L.; Wydra, R.; Harden, D.B.; Lipowska, M.; Cegla, M. J. Org. Chem. 1992, 57, 196. https://doi.org/10.1021/jo00027a037
  41. Strekowski, L.; Wydra, R.; Cegla, MT.; Czarny, A.; Harden, D.B.; Patterson, S. E.; Battiste, M. A.; Coxon, J. M. J. Org. Chem. 1990, 55, 4777. https://doi.org/10.1021/jo00303a001
  42. Strekowski, L.; Patterson, S,E.; Janda, L.; Wydra, R.; Harden, D.B.; Lipowska, M.; Cegla, M. J. Org. Chem. 1992, 57, 196. https://doi.org/10.1021/jo00027a037
  43. Strekowski, L.; Wydra, R.; Cegla, MT.; Czarny, A.; Harden, D. B.; Patterson, S. E.; Battiste, M. A.; Coxon, J. M. J. Org. Chem. 1990, 55, 4777. https://doi.org/10.1021/jo00303a001

피인용 문헌

  1. A General Synthesis of α-Trifluoromethylstyrenes through Palladium-Catalyzed Cross-Couplings with 1,1,1-Trifluoroacetone Tosylhydrazone vol.356, pp.5, 2014, https://doi.org/10.1002/adsc.201300994
  2. Einführung von Fluor und fluorhaltigen funktionellen Gruppen vol.125, pp.32, 2011, https://doi.org/10.1002/ange.201206566
  3. Introduction of Fluorine and Fluorine‐Containing Functional Groups vol.52, pp.32, 2013, https://doi.org/10.1002/anie.201206566
  4. Electrochemical Coupling of Arylsulfonyl Hydrazides and Tertiary Amines for the Synthesis of β‐Amidovinyl Sulfones vol.2019, pp.41, 2019, https://doi.org/10.1002/ejoc.201901277
  5. Fluoroalkyl N-sulfonyl hydrazones: An efficient reagent for the synthesis of fluoroalkylated compounds vol.64, pp.10, 2021, https://doi.org/10.1007/s11426-021-1052-7