DOI QR코드

DOI QR Code

Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides

  • Mo, Jun-Tae (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Hwang, Hoon (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Lee, Phil-Ho (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2010.12.14
  • Accepted : 2011.01.08
  • Published : 2011.08.20

Abstract

Efficient synthetic method for the preparation of ethyl 2-aryl-2,3-alkadienoates through Pd-catalyzed selective allenyl cross-coupling reactions of aryl iodides with organoindiums generated in situ from indium and ethyl 4-bromo-2-alkynoate was developed. The cyclization reaction of ethyl 2-aryl-2,3-alkadienoates catalyzed by $AuCl_3$ and AgOTf in the presence of AcOH or TfOH produced various ${\alpha}$-aryl ${\gamma}$-butenolides or ${\gamma}$-substituted ${\alpha}$-aryl ${\gamma}$-butenolides.

Keywords

References

  1. Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985
  2. Metal-Catalyzed Cross- Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.
  3. Torssell, K. G. B. Natural Product Chemistry; Wiley: Chichester, 1983.
  4. Thomson, R. H. The Chemistry of Natural Products; Blackie and Son: Glasgow, 1985.
  5. Yamamura, K.; Ono, S.; Ogoshi, H.; Masuda, H.; Kuroda, Y. Synlett 1989, 18.
  6. Roncali, J. Chem. Rev. 1992, 92, 711. https://doi.org/10.1021/cr00012a009
  7. Ennis, D. S.; McManus, J.; Wood-Kaczmar, W.; Richardson, J.; Smith, G. E.; Crastairs, A. Org. Process Res. Dev. 1999, 3, 248. https://doi.org/10.1021/op980079g
  8. Baudoin, O.; Cesario, M.; Guenard, D.; Gueritte, F. J. Org. Chem. 2002, 67, 1199. https://doi.org/10.1021/jo0160726
  9. Krause, N., Hashmi, A. S. K., Eds. Modern Allene Chemistry; Wiley-VCH: Weinheim, Germany, 2004; Vols. 1 and 2.
  10. Schuster, H. F., Coppola, G. M., Eds.; Allenes in Organic Synthesis; Wiley-Interscience: New York, 1984.
  11. Taylor, E. C.; Robey, R. L.; Mc Killop, A. J. Org. Chem. 1972, 37, 2797. https://doi.org/10.1021/jo00982a052
  12. Silveira, A. Jr.; Angelastro, M.; Israel, R.; Totino, F.; Williamsen, P. J. Org. Chem. 1980, 45, 3522. https://doi.org/10.1021/jo01305a034
  13. Myrboh, B.; Ila, H.; Junjappa, H. Synthesis 1982, 1100.
  14. Moriarty, R. M.; Vaid, R. K.; Ravikumar, V. T.; Hopkins, T. E.; Farid, P. Tetrahedron 1989, 45, 1605. https://doi.org/10.1016/S0040-4020(01)80023-5
  15. Lang, R. W.; Hansen, H.-J.; Helv. Chim. Acta 1980, 63, 438. https://doi.org/10.1002/hlca.19800630215
  16. Tsuji, J.; Sugiura, T.; Minami, I. Tetrahedron Lett. 1986, 27, 731. https://doi.org/10.1016/S0040-4039(00)84086-1
  17. Conrads, M.; Mattay, J. Synthesis 1991, 11.
  18. Buono, G. Tetrahedron Lett. 1972, 3257.
  19. Gillmann, T.; Weeber, T. Synlett 1994, 649.
  20. Gillmann, T.; Heckhoff, S.; Weeber, T. Synth. Commun. 1994, 24, 2133. https://doi.org/10.1080/00397919408010226
  21. Perez, I.; Sestelo, J. P.; Sarandeses, L. A. Org. Lett. 1999, 1, 1267. https://doi.org/10.1021/ol990939t
  22. Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3, 3201. https://doi.org/10.1021/ol016532h
  23. Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146.
  24. Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265. https://doi.org/10.1021/jo026121u
  25. Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem. Int. Ed. 2002, 41, 3901. https://doi.org/10.1002/1521-3773(20021018)41:20<3901::AID-ANIE3901>3.0.CO;2-S
  26. Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103. https://doi.org/10.1021/ol034167j
  27. Damle, S. V.; Seomoon, D.; Lee, P. H. J. Org. Chem. 2003, 68, 7085. https://doi.org/10.1021/jo034727s
  28. Lee, P. H.; Lee, S. W.; Seomoon, D. Org. Lett. 2003, 5, 4963. https://doi.org/10.1021/ol035883o
  29. Lee, S. W.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Lee, P. H. J. Org. Chem. 2004, 69, 4852. https://doi.org/10.1021/jo0495790
  30. Lee, P. H.; Seomoon, D.; Lee, K.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Sridhar, M. Adv. Synth. Catal. 2004, 346, 1641. https://doi.org/10.1002/adsc.200404125
  31. Lee, P. H.; Kim, S.; Lee, K.; Seomoon, D.; Kim, H.; Lee, S.; Kim, M.; Han, M.; Noh, K.; Livinghouse, T. Org. Lett. 2004, 6, 4825. https://doi.org/10.1021/ol048175r
  32. Lee, P. H.; Seomoon, D.; Lee, K.; Org. Lett. 2005, 7, 343. https://doi.org/10.1021/ol047567v
  33. Lee, P. H.; Lee, K.; Angew. Chem. Int. Ed. 2005, 44, 3253. https://doi.org/10.1002/anie.200461957
  34. Lee, P. H.; Shim, E.; Lee, K.; Seomoon, D.; Kim, S. Bull. Korean Chem. Soc. 2005, 26, 157. https://doi.org/10.5012/bkcs.2005.26.1.157
  35. Mo, J.; Kim, S. H.; Lee, P. H. Org. Lett. 2010, 12, 424. https://doi.org/10.1021/ol902530k
  36. Lee, P. H.; Lee, K.; Kang, Y. J. Am. Chem. Soc. 2006, 128, 1139. https://doi.org/10.1021/ja054144v
  37. Lee, P. H. Bull. Korean Chem. Soc. 2007, 28, 17. https://doi.org/10.5012/bkcs.2007.28.1.017
  38. Seomoon, D.; Lee, K.; Kim, H.; Lee, P. H. Chem. Eur. J. 2007, 13, 5197. https://doi.org/10.1002/chem.200601338
  39. Lee, J.-Y.; Lee, P. H. Bull. Korean Chem. Soc. 2007, 28, 1929. https://doi.org/10.5012/bkcs.2007.28.11.1929
  40. Seomoon, D.; Lee, P. H. J. Org. Chem. 2008, 73, 1165. https://doi.org/10.1021/jo702279t
  41. Lee, W.; Kang, Y.; Lee, P. H. J. Org. Chem. 2008, 73, 4326. https://doi.org/10.1021/jo800438n
  42. Lee, K.; Lee, P. H. Tetrahedron Lett. 2008, 49, 4302. https://doi.org/10.1016/j.tetlet.2008.04.123
  43. Lee, J.-Y.; Lee, P. H. J. Org. Chem. 2008, 73, 7413. https://doi.org/10.1021/jo801169h
  44. Kim, S.; Seomoon, D.; Lee, P. H. Chem. Commun. 2009, 1873.
  45. Kim, H.; Lee, K.; Kim, S.; Lee, P. H. Chem. Commun. 2010, 46, 6341. https://doi.org/10.1039/c0cc01945c
  46. Kang, D.; Eom, D.; Kim, H.; Lee, P. H. Eur. J. Org. Chem. 2010, 2330.
  47. Lee, P. H.; Park, Y.; Park, S.; Lee, E.; Kim, S. J. Org. Chem. 2011, 76, 760. https://doi.org/10.1021/jo102441t
  48. Lee, P. H.; Kim, H.; Lee, K. Adv. Synth. Cat. 2005, 347, 1219. https://doi.org/10.1002/adsc.200505046
  49. Lee, P. H.; Kim, H.; Lee, K.; Kim, M.; Noh, K.; Kim, H.; Seomoon, D. Angew. Chem. Int. Ed. 2005, 44, 1840. https://doi.org/10.1002/anie.200462512
  50. Lee, P. H.; Kim, H.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Lee, M.; Shim, E.; Lee, S.; Kim, M.; Han, M.; Noh, K.; Sridhar, M. Bull. Korean Chem. Soc. 2004, 25, 1687. https://doi.org/10.5012/bkcs.2004.25.11.1687
  51. Lee, P. H.; Seomoon, D.; Kim, S.; Nagaiah, K.; Damle, S. V.; Lee, K. Synthesis 2003, 2189.
  52. Lee, K.; Kim, H.; Miura, T.; Kiyota, K.; Kusama, H.; Kim, S.; Iwasawa, N.; Lee, P. H. J. Am. Chem. Soc. 2003, 125, 9682. https://doi.org/10.1021/ja035988m
  53. Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Kim, H.; Kim, S.; Lee, P. H.; Iwasawa, N. Org. Lett. 2003, 5, 1725. https://doi.org/10.1021/ol034365a
  54. Lee, P. H.; Seomoon, D.; Lee, K.; Heo, Y. J. Org. Chem. 2003, 68, 2510. https://doi.org/10.1021/jo026600t
  55. Iwasawa, N.; Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Lee, P. H. Org. Lett. 2002, 4, 4463. https://doi.org/10.1021/ol026993i
  56. K. Bang, K. Lee, Y. K. Park, Lee, P. H. Bull. Korean Chem. Soc. 2002, 23, 1272. https://doi.org/10.5012/bkcs.2002.23.9.1272
  57. Lee, P. H.; Kim, K.; Kim, S. Org. Lett. 2001, 3, 3205. https://doi.org/10.1021/ol016542i
  58. Lee, P. H.; Lee, K.; Sung, S.-Y.; Chang, S. J. Org. Chem. 2001, 66, 8646. https://doi.org/10.1021/jo0105641
  59. Lee, P. H.; Bang, K.; Lee, K.; Sung, S.-Y.; Chang, S. Synth. Commun. 2001, 31, 3781. https://doi.org/10.1081/SCC-100108228
  60. Lee, P. H.; Lee, K.; Chang, S. Synth. Commun. 2001, 31, 3189. https://doi.org/10.1081/SCC-100105896
  61. Lee, P. H.; Bang, K.; Ahn, H.; Lee, K. Bull. Korean Chem. Soc. 2001, 22, 1385.
  62. Lee, P. H.; Seomoon, D.; Lee, K. Bull. Korean Chem. Soc. 2001, 22, 1380.
  63. Choi, S.; Hwang, H.; Lee, P. H. Eur. J. Org. Chem. 2011, 1351.
  64. Lee, K.; Lee, P. H. Bull. Korean Chem. Soc. 2008, 29, 487. https://doi.org/10.5012/bkcs.2008.29.2.487
  65. Lee, P. H.; Bang, K.; Lee, K.; Lee, C.-H.; Chang, S. Tetrahedron Lett. 2000, 41, 7521. https://doi.org/10.1016/S0040-4039(00)01290-9
  66. Lee, P. H.; Ahn, H.; Lee, K.; Sung, S.-Y.; Kim, S. Tetrahedron Lett. 2001, 42, 37. https://doi.org/10.1016/S0040-4039(00)01872-4
  67. Lee, P. H. Bull. Korean Chem. Soc. 2007, 28, 17. https://doi.org/10.5012/bkcs.2007.28.1.017
  68. Seomoon, D.; A, J.; Lee, P. H. Org. Lett. 2009, 11, 2401. https://doi.org/10.1021/ol9005213
  69. A, J.-M.; Lee, P. H. Bull. Korean Chem. Soc. 2009, 30, 471. https://doi.org/10.5012/bkcs.2009.30.2.471
  70. Park, J.; Kim, S. H.; Lee, P. H. Org. Lett. 2008, 10, 5067. https://doi.org/10.1021/ol802073q
  71. Park, C.; Lee, P. H. Org. Lett. 2008, 10, 3359. https://doi.org/10.1021/ol801196g
  72. Yu, H.; Lee, P. H. J. Org. Chem. 2008, 73, 5183. https://doi.org/10.1021/jo800594y
  73. Lee, K.; Lee, P. H. Org. Lett. 2008, 10, 2441. https://doi.org/10.1021/ol800719g
  74. Kim, S.; Lee, P. H. Eur. J. Org. Chem. 2008, 2262.
  75. Kim, S.; Lee, K.; Seomoon, D.; Lee, P. H. Adv. Synth. Catal, 2007, 349, 2449. https://doi.org/10.1002/adsc.200700309
  76. Lee, K.; Lee, P. H. Chem. Eur. J. 2007, 13, 8877. https://doi.org/10.1002/chem.200700796
  77. Seomoon, D.; Mo, J.; Kang, D.; Eom, D.; Lee, P. H. Bull. Korean Chem. Soc. 2010, 31, 503. https://doi.org/10.5012/bkcs.2010.31.02.503
  78. Eom, D.; Kim, S. H.; Lee, P. H. Bull. Korean Chem. Soc. 2010, 31, 645. https://doi.org/10.5012/bkcs.2010.31.03.645
  79. Kim, H.; Shin, D.; Lee, K.; Lee, S.; Kim, S.; Lee, P. H. Bull. Korean Chem. Soc. 2010, 31, 742. https://doi.org/10.5012/bkcs.2010.31.03.742
  80. Kim, S.; Kang, D.; Shin, S.; Lee, P. H. Tetrahedron Lett. 2010, 51, 1899. https://doi.org/10.1016/j.tetlet.2010.02.026
  81. Lee, P. H.; Mo, J. T.; Kang, D.; Eom, D.; Park, C.; Lee, C.-H.; Jung, Y. M.; Hwang, H. J. Org. Chem. 2011, 76, 312. https://doi.org/10.1021/jo1020085
  82. Pour, M.; Spulak, M.; Balsanek, V.; Kunes, J.; Buchta, V.; Waisser, K. Bioorg. Med. Chem. Lett. 2000, 10, 1893. https://doi.org/10.1016/S0960-894X(00)00376-0
  83. Pour, M.; Spulak, M.; Buchta, V.; Kubanova, P.; Voprsalova, M.; Wsol, V.; Fakova, H.; Koudelka, P.; Pourova, H.; Schiller, R. J. Med. Chem. 2001, 44, 2701. https://doi.org/10.1021/jm010155x
  84. Pour, M.; Spulak, M.; Balsanek, V.; Kunes, J.; Kubanova, P.; Buchta, V. Bioorg. Med. Chem. 2003, 11, 2843. https://doi.org/10.1016/S0968-0896(03)00220-7
  85. Oh, C. H.; Park, S. J.; Ryu, J. H.; Gupta, A. K. Tetrahedron Lett. 2004, 45, 7039. https://doi.org/10.1016/j.tetlet.2004.07.129
  86. Crimmins, M. T.; Nantermet. P. G. J. Org. Chem. 1990, 55, 4235. https://doi.org/10.1021/jo00301a003
  87. Crimmins, M. T.; Nantermet, P. G.; Trotter, B. W.; Vallin, I. M.; Watson, P. S.; McKerlie, L .A.; Reinhold, T. L.; Cheung, A. W. J. Org. Chem. 1993, 58, 1038. https://doi.org/10.1021/jo00057a013
  88. Jordan, R. W.; Villeneuve, K.; Tam, W. J. Org. Chem. 2006, 71, 5830. https://doi.org/10.1021/jo060864o
  89. Trost, B. M.; Ball, Z. T.; Joge, T. J. Am. Chem. Soc. 2002, 124, 7922. https://doi.org/10.1021/ja026457l
  90. Oh, C. H.; Park, S. J.; Ryu, J. H.; Gupta, A. K. Tetrahedron Lett. 2004, 45, 7039. https://doi.org/10.1016/j.tetlet.2004.07.129
  91. MacInnes, I.; Walton, J. C. J. Chem. Soc. Perkin Trans. II 1987, 1077.
  92. Lowe, J. T.; Youngsaye, W.; Panek, J. S. J. Org. Chem. 2006, 71, 3639. https://doi.org/10.1021/jo060134g
  93. Cai, G.; Zhu, W.; Ma, Dawei. Tetrahedron 2006, 62, 5697. https://doi.org/10.1016/j.tet.2006.03.068
  94. Cable, J. R.; Tramontano, A.; Midland, M. M. J. Org. Chem. 1980, 45, 28. https://doi.org/10.1021/jo01289a006
  95. Rao, K. S.; Mullanti, K.; Reddy, S.; Pal, M.; Iqbal, J. Tetrahedron Lett. 2005, 46, 2287. https://doi.org/10.1016/j.tetlet.2005.02.004
  96. Mathews, C. J.; Taylor, J.; Tyte, M. J.; Worthington, P. A. Synlett 2005, 538.
  97. Kang, J.-E.; Lee, E.-S.; Park, S.-I.; Shin, S. Tetrahedron Lett. 2005, 46, 7431. https://doi.org/10.1016/j.tetlet.2005.08.084
  98. Shin, S. Bull. Korean Chem. Soc. 2005, 26, 1925. https://doi.org/10.5012/bkcs.2005.26.12.1925
  99. Hammond, H. J. Am. Chem. Soc. 2008, 130, 17642. https://doi.org/10.1021/ja806685j
  100. Eom D.; Kang, D.; Lee, P. H. J. Org. Chem. 2010, 75, 7447. https://doi.org/10.1021/jo101474s
  101. Lee, P. H.; Kim, S.; Park, A.; Chary, B. C.; Kim, S. Angew. Chem. Int. Ed. 2010, 49, 6806. https://doi.org/10.1002/anie.201001799
  102. Kim, S.; Kang, D.; Shin, S.; Lee, P. H. Tetrahedron Lett. 2010, 51, 1899. https://doi.org/10.1016/j.tetlet.2010.02.026
  103. Park C.; Lee, P. H. Org. Lett. 2008, 10, 3359. https://doi.org/10.1021/ol801196g
  104. Kim S.; Lee, P. H. Adv. Synth. Catal. 2008, 350, 547. https://doi.org/10.1002/adsc.200700471
  105. Lee, K.; Lee, P. H. Adv. Synth. Catal. 2007, 349, 2092. https://doi.org/10.1002/adsc.200700304

Cited by

  1. Gold-Catalyzed Homocoupling Reaction of Terminal Alkynes to 1,3-Diynes vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1325
  2. Synthesis of Substituted Coumarins via Brønsted Acid Mediated Condensation of Allenes with Substituted Phenols or Anisoles vol.77, pp.15, 2012, https://doi.org/10.1021/jo301086k
  3. Organoindium Reagents: The Preparation and Application in Organic Synthesis vol.113, pp.1, 2013, https://doi.org/10.1021/cr300051y
  4. On-Surface Synthesis of Carbon-Based Scaffolds and Nanomaterials Using Terminal Alkynes vol.48, pp.7, 2015, https://doi.org/10.1021/acs.accounts.5b00174