DOI QR코드

DOI QR Code

Composition Dependence on Structural and Optical Properties of MgxZn1-xO Thin Films Prepared by Sol-Gel Method

  • Kim, Min-Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Noh, Keun-Tae (School of Nano Engineering, Inje University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, So-A-Ram (School of Nano Engineering, Inje University) ;
  • Nam, Gi-Woong (School of Nano Engineering, Inje University) ;
  • Lee, Dong-Yul (Epi R&D Team, Samsung LED Co. Ltd.) ;
  • Kim, Jin-Soo (Research Center of Advanced Materials Development (RCAMD), Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Jong-Su (Department of Physics, Yeungnam University) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 투고 : 2011.06.29
  • 심사 : 2011.08.01
  • 발행 : 2011.09.20

초록

The $Mg_xZn_{1-x}O$ thin films with the various content ratio ranging from 0 to 0.4 were prepared by sol-gel spincoating method. To investigate the effects of content ratio on the structural and optical properties of the $Mg_xZn_{1-x}O$ thin films, scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out. With increase in the content ratio, the grain size of the $Mg_xZn_{1-x}O$ thin films was increased, however, at the content ratio above 0.2, MgO particles with cubic structure were formed on the surface of the $Mg_xZn_{1-x}O$ thin films, indicating that the Mg content exceeded its solubility limit in the thin films. The residual stress of the $Mg_xZn_{1-x}O$ thin films is increased with increase in the Mg mole fraction. In the PL investigations, the bandgap and the activation energy of the $Mg_xZn_{1-x}O$ thin films was increased with the Mg mole fraction.

키워드

참고문헌

  1. Wang, Y.-L.; Kim, H. S.; Norton, D. P.; Pearton, S. J.; Ren, F. Appl. Phys. Lett. 2008, 92, 112101. https://doi.org/10.1063/1.2898709
  2. Kim, H. S.; Lugo, F.; Pearton, S. J.; Norton, D. P.; Wang, Y.-L.; Ren, F. Appl. Phys. Lett. 2008, 92, 112108. https://doi.org/10.1063/1.2900711
  3. Lin, S. S.; Lu, J. G.; Ye, Z. Z.; He, H. P.; Gu, X. Q.; Chen, L. X.; Huang, J. Y.; Zhao, B. H. Solid State Commun. 2008, 148, 25. https://doi.org/10.1016/j.ssc.2008.07.028
  4. Hwang, D.-K.; Oh, M.-S.; Lim, J.-H.; Park, S.-J. J. Phys. D: Appl. Phys. 2007, 40, R387. https://doi.org/10.1088/0022-3727/40/22/R01
  5. Pan, X.; Li, J.; Zeng, Y.; Gu, X.; Zhu, L.; Zhao, B.; Che, Y. Appl. Surf. Sci. 2007, 253, 6060. https://doi.org/10.1016/j.apsusc.2007.01.003
  6. Shim, H. S.; Han, N. S.; Seo, J. H.; Park, S. M.; Song, J. K. Bull. Korean Chem. Soc. 2010, 31, 2675. https://doi.org/10.5012/bkcs.2010.31.9.2675
  7. Zhang, X. L.; Chua, S. J.; Yong, A. M.; Yang, H. Y.; Lau, S. P.; Yu, S. F.; Sun, X. W.; Miao, L.; Tanemura, M.; Tanemura, S. Appl. Phys. Lett. 2007, 90, 013107. https://doi.org/10.1063/1.2429019
  8. Cong, C. X.; Yao, B.; Xing, G. Z.; Xie, Y. P.; Guan, L. X.; Li, B. H.; Wang, X. H.; Wei, Z. P.; Zhang, Z. Z.; Lv, Y. M.; Shen, D. Z.; Fan, X. W. Appl. Phys. Lett. 2006, 89, 262108. https://doi.org/10.1063/1.2424449
  9. Shibata, H.; Tampo, H.; Matsubara, K.; Yamada, A.; Sakurai, K.; Ishizuka, S.; Niki, S.; Sakai, M. Appl. Phys. Lett. 2007, 90, 124104. https://doi.org/10.1063/1.2715475
  10. Choopun, S.; Vispute, R. D.; Yang, W.; Sharma, R. P.; Venkatesan, T.; Shen, H. Appl. Phys. Lett. 2002, 80, 1529. https://doi.org/10.1063/1.1456266
  11. Shrestha, S. P.; Ghimire, R.; Nakarmi, J. J.; Kim, Y.-S.; Shrestha, S.; Park, C.-Y.; Boo, J.-H. Bull. Korean Chem. Soc. 2010, 31, 112. https://doi.org/10.5012/bkcs.2010.31.01.112
  12. Zhao, D. X.; Liu, Y. C.; Shen, D. Z.; Lu, Y. M.; Zhang, J. Y.; Fan, X. W. J. Cryst. Growth 2002, 234, 427. https://doi.org/10.1016/S0022-0248(01)01698-0
  13. Ohtomo, A.; Kawasaki, M.; Koida, T.; Masubuchi, K.; Koinuma, H.; Sakurai, Y.; Toshida, Y.; Yasuda, T.; Segawa, Y. Appl. Phys. Lett. 1998, 72, 2466. https://doi.org/10.1063/1.121384
  14. Yang, W.; Hullavarad, S. S.; Nagaraj, B.; Takeuchi, I.; Sharma, R. P.; Venkatesan, T.; Vispute, R. D.; Shen, H. Appl. Phys. Lett. 2003, 82, 3424. https://doi.org/10.1063/1.1576309
  15. Chen, N. B.; Sui, C. H. Mat. Sci. Eng. B 2006, 126, 16. https://doi.org/10.1016/j.mseb.2005.08.112
  16. Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Makino, T.; Chia, C. H.; Segawa, Y.; Koinuma, H. Appl. Phys. Lett. 2004, 84, 3858. https://doi.org/10.1063/1.1748847
  17. Hullavarad, S. S.; Dhar, S.; Varughese, B.; Takeuchi, I.; Venkatesan, T.; Vispute, R. D. J. Vac. Sci. Technol. A 2005, 23, 982. https://doi.org/10.1116/1.1913677
  18. Chakrabarti, S.; Kar, S.; Dev, A.; Chaudhuri, S. Phys. Stat. Sol. (a) 2005, 202, 441. https://doi.org/10.1002/pssa.200406925
  19. Cho, M. Y.; Kim, M. S.; Choi, H. Y.; Jeon, S. M.; Kim, G. S.; Kim, D. Y.; Yim, K. G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Lee, J. I.; Leem, J.-Y. J. Korean Phys. Soc. 2010, 56, 1833. https://doi.org/10.3938/jkps.56.1833
  20. Shujun, Z.; Jiguo, Z.; Zhenxiang, C.; Guangyoung, Z.; Jianru, H.; Huanchu, C. J. Cryst. Growth 1999, 203, 186. https://doi.org/10.1016/S0022-0248(99)00076-7
  21. Murakawa, T.; Fukudome, T.; Hayashi, T.; Isshiki, H.; Kimura, T. Phys. Stat. Sol. (c) 2004, 1, 2564. https://doi.org/10.1002/pssc.200404991
  22. Choi, H. Y.; Kim, M. S.; Cho, M. Y.; Kim, G. S.; Jeon, S. M.; Yim, K. G.; Kim, D. Y.; Ryu, H. H.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Lee, J. I.; Leem, J.-Y. J. Korean Phys. Soc. 2010, 56, 1514. https://doi.org/10.3938/jkps.56.1514
  23. Lee, H.-Y.; Wang, M.-Y.; Chang, K.-J.; Lin, W.-J. IEEE Photonic. Tech. L. 2008, 20, 2108. https://doi.org/10.1109/LPT.2008.2006914
  24. You, J. B.; Zhang, X. W.; Dong, J. J.; Song, X. M.; Yin, Z. G.; Chen, N. F.; Yan, H. Nanoscale Res. Lett. 2009, 4, 1121. https://doi.org/10.1007/s11671-009-9366-y
  25. Zhu, L.; Zhi, M,; Ye, Z, Zhao, B. Appl. Phys. Lett. 2006, 88, 113106. https://doi.org/10.1063/1.2185609
  26. Wang, C.; Zhan, P.; Yue, J.; Zhang, Y.; Zheng, L. Physca B 1997, 403, 459.
  27. Ghosh, R.; Basak, D. J. Appl. Phys. 2007, 101, 023507. https://doi.org/10.1063/1.2426380
  28. Zhang, S. B.; Wei, S. H.; Zunger, A. Phys. Rev. B 2001, 63, 075205. https://doi.org/10.1103/PhysRevB.63.075205
  29. Tuomisto, F.; Saarinen, K.; Look, D. C.; Farlow, G. C. Phys. Rev. B 2006, 72, 085206.
  30. Guo, B.; Qiu, Z. R.; Wong, K. S. Appl. Phys. Lett. 2003, 82, 2290. https://doi.org/10.1063/1.1566482
  31. Trunk, M.; Venkatachalapathy, V.; Galeckas, A.; Kuznetsov, A. Y. Appl. Phys. Lett. 2010, 97, 211901. https://doi.org/10.1063/1.3518480
  32. Ogawa, Y.; Fujihara, S. J. Electrochem. Soc. 2007, 154, J283. https://doi.org/10.1149/1.2756372
  33. Kim, Y. Y.; Kong, B. H,; Choi, M. K.; Cho, H. K. Mater. Sci. Eng. B-Adv. 2009, 165, 80. https://doi.org/10.1016/j.mseb.2009.02.017
  34. Pan, C.-J.; Lin, K.-F.; Hsu, W.-T.; Hsieh, W.-F. J. Appl. Phys. 2007, 102, 123504. https://doi.org/10.1063/1.2820100

피인용 문헌

  1. Optical parameters of Mg x Zn1−x O thin films prepared by using the sol-gel method vol.60, pp.5, 2012, https://doi.org/10.3938/jkps.60.830
  2. Improvement of the Crystallinity of MgZnO with a Zn Buffer Layer by Sol-Gel Spin-coating Method vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10300
  3. Fabrication and characterization of hydrothermally grown MgZnO nanorod films for Schottky diode applications vol.23, pp.1, 2017, https://doi.org/10.1007/s00542-015-2724-z
  4. MgxZn1−xO Prepared by the Sol-Gel Method and Its Application for Ultraviolet Photodetectors vol.49, pp.8, 2011, https://doi.org/10.1007/s11664-020-08010-3