DOI QR코드

DOI QR Code

Colorimetric Determination of pH Values using Silver Nanoparticles Conjugated with Cytochrome c

  • Park, Jun-Su (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes, Seoul National University (SNU)) ;
  • Choi, In-Hee (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes, Seoul National University (SNU)) ;
  • Kim, Young-Hun (Department of Chemical Engineering, Kwangwoon University) ;
  • Yi, Jong-Heop (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes, Seoul National University (SNU))
  • Received : 2011.05.27
  • Accepted : 2011.08.01
  • Published : 2011.09.20

Abstract

Some of metal nanoparticles have the potential for use as colorimetric assays for estimating solution properties, such as pH and temperature due to localized surface plasmon (LSP) phenomena. This report describes the use of silver nanoparticles (AgNP) conjugated with cytochrome c (Cyt c) for the colorimetric determination of solution pHs. When the pH of a solution decreases, the Cyt c immobilized on the AgNP undergoes a conformational change, leading to a decrease in the interparticle distance between Cyt c-AgNP probes and consequent red-shift in LSP. As a result, the color of the Cyt c-AgNP probe solution changes from yellow to red and finally to a grayish blue in the pH range from 11 to 3. This gradual color change can be used to determine the pH of a solution over a wide pH range, compared to other colorimetric methods that use gold nanoparticles.

Keywords

References

  1. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668. https://doi.org/10.1021/jp026731y
  2. Park, S.-E.; Park, M.-Y.; Han, S.-W. Bull. Korean. Chem. Soc. 2006, 27, 1341. https://doi.org/10.5012/bkcs.2006.27.9.1341
  3. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435. https://doi.org/10.1038/nmat1390
  4. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Nano-medicine 2007, 2, 681.
  5. Hong, S.; Lee, S.; Yi, J. Nanoscale. Res. Lett. 2011, in press.
  6. Kang, T.; Hong, S.; Choi, I.; Sung, J. J.; Kim, Y.; Hahn, J.-S.; Yi, J. J. Am. Chem. Soc. 2006, 128, 12870. https://doi.org/10.1021/ja0632198
  7. Hong, S.; Choi, I.; Lee, S.; Yang, Y. I.; Kang, T.; Yi, J. Anal. Chem. 2009, 81, 1378. https://doi.org/10.1021/ac802099c
  8. Cortez, J.; Vorobieva, E.; Gralheira, D.; Osório, I.; Soares, L.; Vale, N.; Pereira, E.; Gomes, P.; Franco, R. J. Nanopart. Res. 2011, 13, 1101. https://doi.org/10.1007/s11051-010-0099-8
  9. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607. https://doi.org/10.1038/382607a0
  10. Katz, E.; Willner, I. Angew. Chem. Int. Ed. 2004, 43, 6042. https://doi.org/10.1002/anie.200400651
  11. Battistuzzi, G.; Borsari, M.; Loschi, L.; Martinelli, A.; Sola, M. Biochemistry 1999, 38, 7900. https://doi.org/10.1021/bi983060e
  12. Bertini, I.; Cavallaro, G.; Rosato, A. Chem. Rev. 2006, 106, 90. https://doi.org/10.1021/cr050241v
  13. Chah, S.; Hammond, M. R.; Zare, R. N. Chem. Biol. 2005, 12, 323. https://doi.org/10.1016/j.chembiol.2005.01.013
  14. Perroud, T. D.; Bokoch, M. P.; Zare, R. N. P. Natl. Acad. Sci. USA 2005, 102, 17570. https://doi.org/10.1073/pnas.0508975102
  15. Zhang, D.; Neumann, O.; Wang, H.; Yuwono, V. M.; Barhoumi, A.; Perham, M.; Hartgerink, J. D.; Wittung-Stafshede, P.; Halas, N. J. Nano Lett. 2009, 9, 666. https://doi.org/10.1021/nl803054h
  16. Xue, C.; Li, Z.; Mirkin, C. A. Small 2005, 1, 513. https://doi.org/10.1002/smll.200400150
  17. Kreibig, U.; Genzel, L. Surf. Sci. 1985, 156, 678. https://doi.org/10.1016/0039-6028(85)90239-0
  18. Lee, K. S.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 19220. https://doi.org/10.1021/jp062536y
  19. Pinheiro, T. J. T. Biochimie 1994, 76, 489. https://doi.org/10.1016/0300-9084(94)90173-2
  20. Bagwe, R. P.; Khilar, K. C. Langmuir 2000, 16, 905. https://doi.org/10.1021/la980248q
  21. Gomes, I.; Santos, N. C.; Oliveira, L. M. A.; Quintas, A.; Eaton, P.; Pereira, E.; Franco, R. V. J. Phys. Chem. C 2008, 112, 16340. https://doi.org/10.1021/jp804766v
  22. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959. https://doi.org/10.1021/ja972332i
  23. Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C. J. Am. Chem. Soc. 2000, 122, 4640. https://doi.org/10.1021/ja993825l
  24. Xu, X.-H. N.; Brownlow, W. J.; Kyriacou, S. V.; Wan, Q.; Viola, J. J. Biochemistry 2004, 43, 10400. https://doi.org/10.1021/bi036231a
  25. Nallathamby, P. D.; Lee, K. J.; Xu, X.-H. N. ACS Nano 2008, 2, 1371. https://doi.org/10.1021/nn800048x

Cited by

  1. Photocatalyst: Thiocyanate as a Selective Modifier vol.6, pp.2, 2016, https://doi.org/10.1021/acscatal.5b02376
  2. Optical assays based on colloidal inorganic nanoparticles vol.143, pp.14, 2018, https://doi.org/10.1039/C8AN00731D