DOI QR코드

DOI QR Code

Structural and Spectroscopic Investigation of Ceria Nanofibers Fabricated by Electrospinning Process

  • Hwang, Ah-Reum (Department of Chemistry, Pukyong National University) ;
  • Park, Ju-Yun (Department of Chemistry, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
  • Received : 2011.06.16
  • Accepted : 2011.07.25
  • Published : 2011.09.20

Abstract

We fabricated ceria ($CeO_2$) nanofibers by applying a mixed solution of polyvinylpyrrolidone (PVP) and various concentrations of cerium nitrate hydrate ($Ce(NO_3)_3$) ranging from 15.0 to 26.0 wt % by the electrospinning process. Ceria nanofibers were obtained after calcining PVP/$Ce(NO_3)_3$ nanofiber composites at 873 and 1173 K. The SEM images indicated that the diameters of $CeO_2$ nanofibers calcined at 873 and 1173 K were smaller than those of nanofibers obtained at RT. As the amount of cerium increased, the diameter of $CeO_2$ nanofibers increased. XRD analysis revealed that the ceria nanofibers were in cubic form. TEM results revealed that the ceria nanofibers were formed by the interconnection of Ce oxide nanoparticles. The ceria nanofibers obtained at low concentrations of Ce (CeL) showed spotty ring patterns indicated that the ceria nanofibers were polycrystalline structure. And the ceria nanofibers obtained at high concentration of Ce (CeH) showed fcc (001) diffraction pattern. XPS study indicated that the oxidation of Ce shifted from $Ce^{3+}$ to $Ce^{4+}$ as the calcination temperature increased.

Keywords

References

  1. Ashammakhi, N.; Ndreu, A.; Piras, A. M.; Nikkola, L.; Sindelar, T.; Ylikauppila, H.; Harlin, A.; Gomes, M. E.; Neves, N. M.; Chiellini, E.; Chiellini, F.; Hasirci, V.; Redl, H.; Reis, R. L. J. Nanosci. Nanotechnol. 2007, 7, 862. https://doi.org/10.1166/jnn.2007.485
  2. Yang, A.; Tao, X.; Pang, G. K. H.; Siu, K. G. G. J. Am. Ceram. Soc. 2008, 91, 257.
  3. Chen, S.; Hau, H.; Hu, P.; Wendorff, J. H.; Greiner, A.; Agarwal, S. Macromol. Mater. Eng. 2009, 294, 781. https://doi.org/10.1002/mame.200900139
  4. Chuangchote, S.; Supaphol, P. J. Nanosci. Nanotechnol. 2006, 6, 125.
  5. Luepong, K.; Koombhongse, P.; Kongkachuichay, P. Chiang Mai J. Sci. 2009, 37(1), 85.
  6. Kang, M. S.; Jin, H. J. Key Engineering Materials 2006, 321, 934. https://doi.org/10.4028/www.scientific.net/KEM.321-323.934
  7. Bolgen, N.; Menceloglu, Y. Z.; Acatay, K.; Vargel, I.; Piskin, E. J. Biomater. Sci. Polymer Edn. 2005, 16, 1537. https://doi.org/10.1163/156856205774576655
  8. Stasiak, M.; Roben, C.; Rosenberger, N.; Schleth, F.; Studer, A.; Greiner, A.; Wendorff, J. H. Polymer 2007, 48, 5208. https://doi.org/10.1016/j.polymer.2007.07.006
  9. Stasiak, M.; Studer, A.; Greiner, A.; Wendorff, J. H. Eur. J. Inorg. Chem. 2007, 13, 6150.
  10. Kim, S. J.; Nam, Y. S.; Rhee, D. M.; Park, H. S.; Park, W. H. European Polymer Journal 2007, 43, 3146. https://doi.org/10.1016/j.eurpolymj.2007.04.046
  11. Caricato, A. P.; Capone, S.; Ciccarella, G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Taurino, A.; Tunno, T.; Valerini, D. Applied Surface Science 2007, 253, 7937. https://doi.org/10.1016/j.apsusc.2007.02.066
  12. Wang, Y.; Yang, Q.; Shan, G.; Wang, C.; Du, J.; Wang, S.; Li, Y.; Chen, X.; Jing, X.; Wei, Y. Materials Letter 2005, 59, 3046. https://doi.org/10.1016/j.matlet.2005.05.016
  13. Maze, B.; Vahedi Tafreshi, H.; Wang, Q.; Pourdeyhimi, B. Aerosol Science 2007, 38, 550. https://doi.org/10.1016/j.jaerosci.2007.03.008
  14. Gopal, R.; Kaur, S.; Ma, Z.; Chan, C.; Ramakrishna, S.; Matsuura, T. J. Memb. Sci. 2007, 281, 581.
  15. Ramaseshan, R.; Sundarrajan, S.; Jose, R.; Ramakrishna, S. J. Appl. Phys. 2007, 102, 111101 https://doi.org/10.1063/1.2815499
  16. Namai, Y.; Fukui, K. I.; Iwasawa, Y. J. Phys. Chem. B 2003, 107, 11666. https://doi.org/10.1021/jp030142q
  17. Barreca, D.; Gasparotto, A.; Tondello, E.; Sada, C.; Polizzi, S.; Benedetti, A. Chem. Vap. Depos. 2003, 9, 199. https://doi.org/10.1002/cvde.200306247
  18. Muroga, T.; Iwai, H.; Yamada, Y.; Izumi, T.; Shiohara, Y.; Iijima, Y.; Saito, T.; Kato, T.; Sugawara, Y.; Hirayama, T. Physica. C 2003, 796, 392.
  19. Shirakawa, M.; Unno, J.; Aizawa, K.; Kusunoki, M.; Mukaida, M.; Ohshima, S. Physica. C 2003, 1346, 392.
  20. Kleinlogel, C.; Gauckler, L. J. Adv. Mater. 2001, 13, 1081. https://doi.org/10.1002/1521-4095(200107)13:14<1081::AID-ADMA1081>3.0.CO;2-D
  21. Kendall, K.; Palin, M. J. Power Sources 1998, 71, 268. https://doi.org/10.1016/S0378-7753(97)02761-4
  22. Patsalas, P.; Logothetidis, S.; Metaxa, C. Appl. Phys. Lett. 2002, 81, 466. https://doi.org/10.1063/1.1494458
  23. Kanakaraju, S.; Mohan, S.; Sood, A. K. Thin Solid Films 1997, 305, 191. https://doi.org/10.1016/S0040-6090(97)00081-3
  24. Guo, S.; Arwin, H.; Jacobson, S. N.; Jarrendahl, K.; Helmerson, U. J. Appl. Phys. 1995, 77, 5369. https://doi.org/10.1063/1.359225
  25. Sohlberg, K.; Pantelides, S. T.; Pennycook, S. J. J. Am. Chem. Soc. 2001, 123, 6609. https://doi.org/10.1021/ja004008k
  26. Yang, X.; Shao, C.; Liu, Y.; Mu, R.; Guan, H. Thin Solid Films 2005, 478, 228. https://doi.org/10.1016/j.tsf.2004.11.102
  27. Qizheng, C.; Xiangting, D.; Jinxian, W.; Mei, L. Journal of Rare Earths 2008, 26, 664. https://doi.org/10.1016/S1002-0721(08)60158-1
  28. JCPDS Database, International Center for Diffraction Data 1997, PDF 81-0792.
  29. Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A 2007, 327, 261. https://doi.org/10.1016/j.apcata.2007.05.024
  30. Yao, H. B.; Li, Y.; Wee, A. T. S. Appl. Surf. Sci. 2000, 158, 112. https://doi.org/10.1016/S0169-4332(99)00593-0
  31. Sohal, R.; Lupina, G.; Seifarth, O.; Zaumseil, P.; Walczyk, C.; Schroeder, T. Surf. Sci. 2010, 604, 276. https://doi.org/10.1016/j.susc.2009.11.017
  32. Bera, S.; Mittal, V. K.; Venkata Krishnan, R.; Saravanan, T.; Velmurugan, S.; Nagarajan, K.; Narasimhan, S. V. J. Nucl. Mat. 2009, 393, 120. https://doi.org/10.1016/j.jnucmat.2009.05.015

Cited by

  1. Microfibers Produced by Electrospinning Process vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1242
  2. Morphological evolution and growth of cerium oxide nanostructures by virtue of organic ligands as well as monomer concentration vol.17, pp.37, 2015, https://doi.org/10.1039/C5CE00965K
  3. Nanofibers for the Water-Gas Shift Reaction vol.25, pp.26, 2015, https://doi.org/10.1002/adfm.201501392
  4. Synthesis of supported CeO2 nanofibers via electrospinning vol.398, pp.1, 2011, https://doi.org/10.1088/1742-6596/398/1/012051
  5. Electrospun Mn:CeO2/PVP Nanofiber Fabrication: Whole Powder Pattern Modeling of X-ray Diffraction Data, Morphology Study and Optical Properties vol.48, pp.12, 2011, https://doi.org/10.1007/s11664-019-07597-6
  6. 세륨옥사이드나노입자(CNP)첨가가 치면열구전색재 기계적 성질에 미치는 영향 vol.20, pp.6, 2020, https://doi.org/10.5392/jkca.2020.20.06.433