DOI QR코드

DOI QR Code

Synthesis of Zr-incorporated TiO2 Using a Solvothermal Method and its Photovoltaic Efficiency on Dye-sensitized Solar Cells

  • Kim, Su-Jung (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2011.05.17
  • Accepted : 2011.07.20
  • Published : 2011.09.20

Abstract

This study examines the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) when nanometer-sized Zr (0.1, 0.5, and 1.0 mol %)-$TiO_2$ prepared using a solvothermal method is utilized as the working electrode material. The particle sizes observe in the transmission electron microscopy (TEM) images are < 30 nm in all samples. The absorption band is slightly broadened at the tail for the 0.1 mol % Zr-$TiO_2$, and the intensity of the photoluminescence (PL) curves of the Zr-incorporated $TiO_2$ is significantly smaller than that of the pure $TiO_2$. Compared to that using pure $TiO_2$, the energy conversion efficiency is enhanced considerably by the application of Zr-$TiO_2$ in the DSSCs to approximately 6.17% for 0.5 mol % Zr-$TiO_2$ with the N719 dye (10.0 ${\mu}m$ film thickness and 5.0 mm ${\times}$ 5.0 mm cell area) under 100 mW/$cm^2$ of simulated sunlight.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Cahen, D.; Hodes, G.; Graltzel, M.; Guillemoles, J. F.; Riess, I. J. Phys. Chem. B 2000, 104, 2053. https://doi.org/10.1021/jp993187t
  3. Gratzel, M. Comptes Rendus Chimie 2006, 9, 578. https://doi.org/10.1016/j.crci.2005.06.037
  4. Bisquert, J.; Cahen, D.; Hodes, G.; Rulhle, S.; Zaban, A. J. Phys. Chem. B 2004, 108, 8106. https://doi.org/10.1021/jp0359283
  5. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  6. Lee, Y.; Chae, J.; Kang, M. J. Ind. Eng. Chem. 2010, 16, 609. https://doi.org/10.1016/j.jiec.2010.03.008
  7. Huang, C. Y.; Hsu, Y. C.; Chen, J. G.; Suryanarayanan, V.; Lee, K. M.; Ho, K. C. Sol. Energy Mater. Sol. Cells 2006, 90, 2391. https://doi.org/10.1016/j.solmat.2006.03.012
  8. Haque, S. A.; Tachibana, Y.; Willis, R. L.; Moser, J. E.; Graltzel, M.; Klug, D. R.; Durrant, J. R. J. Phys. Chem. B 2000, 104, 538. https://doi.org/10.1021/jp991085x
  9. Jung, H. G.; Kang, Y. S.; Sun, Y. K. Electrochimica Acta 2010, 55, 4637. https://doi.org/10.1016/j.electacta.2010.03.031
  10. Ngamsinlapasathian, S.; Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Sol. Energy Mater. Sol. Cells 2005, 86, 269. https://doi.org/10.1016/j.solmat.2004.06.010
  11. Lee, Y.; Kang, M. Mater. Chem. Phys. 2010, 122, 284. https://doi.org/10.1016/j.matchemphys.2010.02.050
  12. Zhang, Y.; Xie, Z.; Wang, J. Thin Solid Films, in press.
  13. Lu, L.; Li, R.; Fan, K.; Peng, T. Solar Energy 2010, 84, 844. https://doi.org/10.1016/j.solener.2010.02.010
  14. Fukai, Y.; Kondo, Y.; Mori, S.; Suzuki, E. Electrochem. Commun. 2007, 9, 1439. https://doi.org/10.1016/j.elecom.2007.01.054
  15. Jeon, M. K.; Kang, M. Mater. Letters 2008, 62, 676. https://doi.org/10.1016/j.matlet.2007.06.038
  16. Chae, J.; Lee, J.; Jeong, J. H.; Kang, M. Bull. Korean Chem. Soc. 2009, 30, 302. https://doi.org/10.5012/bkcs.2009.30.2.302
  17. Kitiyanan, A.; Ngamsinlapasathian, S.; Pavasupree, S.; Yoshikawa, S. J. Solid State Chem. 2005, 178, 1044. https://doi.org/10.1016/j.jssc.2004.12.043
  18. Kang, M. Mater. Letters 2005, 59, 3122. https://doi.org/10.1016/j.matlet.2005.05.032
  19. Howard, C. J.; Sabine, T. M.; Dickson, F. Acta Cryst. B 1991, 47, 462. https://doi.org/10.1107/S010876819100335X
  20. Jian, Z.; Hejing, W. Chinese J. Geochem. 2003, 22, 38. https://doi.org/10.1007/BF02831544
  21. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M. J. Am. Chem. Soc. 1988, 110, 1216. https://doi.org/10.1021/ja00212a033
  22. Kalyanasundaran, K.; Gratzel, M. Coord. Chem. Rev. 1998, 77, 347.
  23. Shin, I.; Seo, H.; Son, M. K.; Kim, J. K.; Prabakar, K.; Kim, H. J. Curr. Appl. Phys. 2010, 10, 422. https://doi.org/10.1016/j.cap.2009.06.044
  24. Wang, Q.; Moser, J. E.; Gratzel, M. J. Phys. Chem. B 2005, 109, 14945. https://doi.org/10.1021/jp052768h
  25. Baiju, K. V.; Zachariah, A.; Shukla, S.; Biju, S.; Reddy, M. L. P.; Warrier, K. G. K. Catal. Lett. 2009, 130, 130. https://doi.org/10.1007/s10562-008-9798-5

Cited by

  1. Materials vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1220
  2. on photocatalytic activity in degradation of organic waste vol.40, pp.3, 2018, https://doi.org/10.1080/15567036.2017.1300960