DOI QR코드

DOI QR Code

Characteristics of Ni/3d Series Transition Metal/γ-Al2O3 Catalysts and their Hydrogen Production Abilities from Butane Steam Reforming

  • Lee, Jun-Su (Department of Chemistry, College of Science, Yeungnam University) ;
  • Choi, Byung-Hyun (Korean Institute of Ceramic Engineering & Technology (KICET)) ;
  • Ji, Mi-Jung (Korean Institute of Ceramic Engineering & Technology (KICET)) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2011.05.19
  • Accepted : 2011.07.20
  • Published : 2011.09.20

Abstract

The materials composed of the 3d series transition metals are introduced into the hydrocarbon steam-reforming reaction in order to enhance the $H_2$ production and abruptly depress the catalytic deactivation resulting from the strong sintering between the Ni component and the ${\gamma}-Al_2O_3$ support. The conventional impregnation method is used to synthesize the Ni/3d series metal/${\gamma}-Al_2O_3$ materials through the sequentially loading Ni source and the 3d series metal (Ti, V, Cr, Mn, Fe, Co, Cu, and Zn) sources onto the ${\gamma}-Al_2O_3$ support. The Mnloaded material exhibits a significantly higher reforming reactivity than the conventional Ni/${\gamma}-Al_2O_3$ and the other Ni/3d series metal/${\gamma}-Al_2O_3$ materials. Particularly the addition of Mn selectively improves the $H_2$ product selectivity by eliminating the formation of $CH_4$ and CO. The $H_2$ production is maximized at a value of 95% over Ni(0.3)/Mn(0.3)/${\gamma}-Al_2O_4$(1.0) with a butane conversion of 100% above $750^{\circ}C$ for up to 55 h.

Keywords

References

  1. Avcl, A. K.; Onsan, Z. I.; Trimm, D. L. Appl. Catal. A 2001, 216, 243. https://doi.org/10.1016/S0926-860X(01)00568-3
  2. Avcl, A. K.; Trimm, D. L.; Aksoylu, A. E.; Onsan, Z. I. Appl. Catal. A 2004, 258, 235. https://doi.org/10.1016/j.apcata.2003.09.016
  3. Chin, Y. H.; King, D. L.; Roh, H. S.; Wang, Y.; Heald, S. M. J. Catal. 2006, 244, 153. https://doi.org/10.1016/j.jcat.2006.08.016
  4. Xu, J.; Chen, L.; Tana, K. F.; Borgna, A.; Saeys, M. J. Catal. 2009, 261, 158. https://doi.org/10.1016/j.jcat.2008.11.007
  5. Kroll, V. C. H.; Swaan, H. M.; Mirodatos, C. J. Catal. 1996, 161, 409. https://doi.org/10.1006/jcat.1996.0199
  6. Rostrup-Nielsen, J. R.; Anderson, J. R.; Boudart, M. Catalytic Steam Reforming, Catalysis Science and Technology; Springer- Verlag: Berlin, 1984, Vol. 5, chap. 1.
  7. Swaan, H. M.; Kroll, V. C. H.; Martin, G. A.; Mirodatos, C. Catal. Today 1994, 21, 571. https://doi.org/10.1016/0920-5861(94)80181-9
  8. Wei, J.; Iglesia, E. J. Catal. 2004, 224, 370. https://doi.org/10.1016/j.jcat.2004.02.032
  9. Gokaliler, F.; Gocmen, B. A.; Aksoylu, A. E. Int. J. Hydrogen Energy 2008, 33, 4358. https://doi.org/10.1016/j.ijhydene.2008.05.068
  10. Sato, K.; Nagaoka, K.; Nishiguchim, H.; Takita, Y. Int. J. Hydrogen Energy 2009, 34, 333. https://doi.org/10.1016/j.ijhydene.2008.10.014
  11. Jeong, H.; Kang, M. Appl. Catal. B 2010, 95, 446. https://doi.org/10.1016/j.apcatb.2010.01.026
  12. Nie, X.; Meletis, E. I.; Jiang, J. C.; Leyland, A.; Yerokhin, A. L.; Matthews, A. Surf. Coat. Tech. 2002, 149, 245. https://doi.org/10.1016/S0257-8972(01)01453-0
  13. Hirano, H.; Tanaka, K. I. J. Catal. 1992, 133, 461. https://doi.org/10.1016/0021-9517(92)90253-E
  14. Du, G.; Lim, S.; Yang, Y.; Wang, C.; Pfefferle, L.; Haller, G. L. J. Catal. 2007, 249, 370. https://doi.org/10.1016/j.jcat.2007.03.029
  15. Ma, L.; Trimm, D. L.; Jiang, C. Appl. Catal. A 1996, 138, 275. https://doi.org/10.1016/0926-860X(95)00301-0
  16. Sago, F.; Fukuda, S.; Sato, K.; Nagaoka, K.; Nishiguchi, H.; Takita, Y. Int. J. Hydrogen Energy 2009, 34, 8046. https://doi.org/10.1016/j.ijhydene.2009.08.005
  17. Seo, J. G.; Youn, M. H.; Song, I. K. Int. J. Hydrogen Energy 2009, 34, 1809. https://doi.org/10.1016/j.ijhydene.2008.12.031
  18. Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L'Argentiere, P. C.; Figoli, N. S. Appl. Surf. Sci. 2003, 210, 222. https://doi.org/10.1016/S0169-4332(03)00146-6