DOI QR코드

DOI QR Code

Transmission Probability of Car-to-Car Message Delivery Link based on Visible Light Communications

광무선통신기술을 이용한 차량간 메시지전달링크의 링크전송확률 분석

  • 강문수 (조선대학교 컴퓨터공학부) ;
  • 이충규 (조선대학교 전자공학과)
  • Received : 2011.05.12
  • Accepted : 2011.06.23
  • Published : 2011.06.30

Abstract

In this paper, we perform a research on a message delivery link based on visible light communication using illumination light-emitting diodes (LEDs) for car-to-car communications and the link transmission success probability is analyzed for the link. The message delivery system is modeled and the signal-to-noise ratio is calculated from the received optical power. Then, the link transmission probability is estimated from the calculated bit error rates (BERs). The message delivery system has optical links from an LED transmitter near the rear lamp of a car ahead to a receiver near the headlamp of a car behind, whose positions are assumed to follow the normal Gaussian distribution. The link transmission success probability is calculated considering the physical characteristics of the optical link. The car positions are generated according to the normal distribution and the bit error rates are calculated for all links. The link transmission success probability is defined. For the unoptimized optical car-to-car message delivery links, it is shown that the link transmission success probability is larger than 0.9 with the transmitted optical power of 400 mW and the semi-angle at half power of 30 degree.

본 논문의 연구내용은 차량간 통신에 응용이 가능한 조명용 LED 광통신 링크의 링크전송성공율 분석에 관한 연구로서, 가시광통신에 기반한 차량간 메시지 전달 시스템을 모델링 하고, 광수신 파워를 통해 신호대 잡음비 (signal-to-noise ratio)를 계산하고, 이에 따른 링크 전송성공확률을 계산함으로써, 가시광통신에 기반한 차량간 무선통신이 가능함을 검증하는 것이다. 저속이동 또는 정지 중인 차량의 후미등을 광송신기로 사용하고 후방차량의 전방에 장착된 광수신기를 이용하는 메시지 전달시스템에 있어, 각 차량의 위치가 정규확률분포를 따를 때, 광송신기 및 광수신기의 물리적 특성에 따른 링크전송성공확률을 계산한다. 먼저, 정규확률분포에 따라 차량의 위치를 랜덤하게 생성한 후, 각각의 광링크에 해당하는 BER을 계산하였다. 이를 통해, 전체 링크 중 $BER{\leq}10^{-6}$을 만족하는 링크의 비율을 링크전송성공율로 정의한 결과, 송신 광파워가 400mW이고 광송신기의 semi-angle at half power가 30도인 최적화되지 않은 차량간 광링크의 경우, 링크 전송성공율 90% 이상이 가능함을 확인하였다.

Keywords

References

  1. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press: Cambridge, U.K. 2003).
  2. C. D. Knutson and J. M. Brown, IrDA Principles and Protocols (MCL Press: Salem, USA, 2004).
  3. J. B. Carruthers and P. Kannan, "Iterative site- based modeling for wireless infrared channels," IEEE Transactions on Antennas and Propagation 50, 759-765, 2002. https://doi.org/10.1109/TAP.2002.1011244
  4. J. B. Carruthers, S. M. Carroll, P. Kannan, "Propagation modelling for indoor optical wireless communications using fast multi-receiver channel estimation," IEE Proceedings- Optoelectronics 150, 473-481, 2003. https://doi.org/10.1049/ip-opt:20030527
  5. J. M. Kahn and J. R. Barry, "Wireless Infrared Communications," Proc. IEEE 85, 265-298, 1997. https://doi.org/10.1109/5.554222
  6. Y. Tanaka, T. Komine, S. Haruyama, M. Nakagawa, "Indoor Visible Light Data Transmission Utilizing White LED Lights," IEICE Trans. Communications E86-B, 2440- 2454, 2003.
  7. T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consumer Electron. 50, 100-107, 2004. https://doi.org/10.1109/TCE.2004.1277847
  8. C. G. Lee, C. S. Park, J.-H. Kim, D.-H. Kim, "Experimental verification of optical wireless communication link using high-brightness illumination light-emitting diodes," Opt. Eng. 46, 125005-1-125005-7, 2007. https://doi.org/10.1117/1.2823157
  9. J. Vucic, C. Kottke, S. Nerreter, K.-D. Langer, J. W. Walewski, "513 Mbit/s Visible Light Communications Link Based on DMT- Modulation of a White LED," J. Lightwave Technol. 28, 3512-3518, 2010.
  10. H. L. Minh, D. C. O'Brien, G. F. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, "High-speed visible light communications using multiple-resonant equalization," IEEE Photonics Technology Letters. 20, 1243-1245, 2008. https://doi.org/10.1109/LPT.2008.926030
  11. H. Hartenstein and K. P. Laberteaux, "A Tutorial Survey on Vehicular Ad Hoc Networks," IEEE Commun. Mag. 46, 164-171, 2008.
  12. http://www.car-to-car.org
  13. 이상우, 조한벽, 오현서, 곽동용, "차량 통신 네트워크(VANET) 표준화 동향," 한국멀티미디어학회지, 제12권, 제4호, 1-9, 2008년.
  14. Chung Ghiu Lee, Inter-vehicle information delivery system, Patent (South Korea), 10- 0996284, 17 November 2010.
  15. A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd edition(Addison Wesley, Reading, USA, 1994).
  16. R. E. Ziemer and W. H. Tranter, Principles of Communications, 5th edition (John Wiley and Sons, 2001).
  17. H. Willebrand and B.S. Ghuman, Free Space Optics: Enabling Optical Connectivity in today's network (SAM Spublishing: Indianapolis, USA, 2002).
  18. E. Leitgeb, S. S. Muhammad, B. Flecker, C. Chlestil, M. Gebhart, T. Javornik, "The Influence of Dense Fog on Optical Wireless Systems, Analysed by Measurements in Graz for Improving the Link-Reliability," Proc. ICTON 2006, pp.154-159, Nottingham, UK, June 2006.
  19. R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling (Wiley-Interscience, New York, USA, 1991).
  20. A. J. C. Moreira, R. T. Valadas, A. M. O. Duarte, "Optical interference produced by artificial light," Wireless Networks 3, 131-140, 1997. https://doi.org/10.1023/A:1019140814049