Abstract
This paper presents a robust 3D model hashing dependent on key and parameter by using heat kernel signature (HKS), which is special shape feature descriptor, In the proposed hashing, we calculate HKS coefficients of local and global time scales from eigenvalue and eigenvector of Mesh Laplace operator and cluster pairs of HKS coefficients to 2D square cells and calculate feature coefficients by the distance weights of pairs of HKS coefficients on each cell. Then we generate the binary hash through binarizing the intermediate hash that is the combination of the feature coefficients and the random coefficients. In our experiment, we evaluated the robustness against geometrical and topological attacks and the uniqueness of key and model and also evaluated the model space by estimating the attack intensity that can authenticate 3D model. Experimental results verified that the proposed scheme has more the improved performance than the conventional hashing on the robustness, uniqueness, model space.
본 논문에서는 형상 특징자인 열 커널 인증 (Heat Kernel Signature, HKS)를 기반으로 강인한 3D 모델 해싱을 제안한다. 키와 매개변수에 의존한 형상 특징자 기반 3D 모델 해싱을 제안한다. 제안한 방법에서는 Mesh Laplace 연산자의 고유치와 고유벡터에 의하여 각 꼭지점에 대한 전역 및 국부 타임 HKS 계수를 구한 다음, 이 계수들을 정방형 2D 셀로 군집화한다. 그리고 각 셀에 할당된 HKS 계수 쌍의 거리 가중치 기반으로 정의된 특징계수와 랜덤 계수 키와의 조합에 의하여 중간 해쉬 계수를 생성한 다음, 이진화 과정에 의하여 최종 이진 해쉬를 생성한다. 본 실험에서는 3D 범용 툴을 이용한 다양한 기하하적 공격과 위상학적 공격을 통하여 강인성을 평가하였고, 모델과 키 조합에 대한 해쉬의 유일성을 평가하였다. 또한 인증 범위를 만족히는 공격 세기를 측정함으로써 모델 공간성을 평가하였다. 실험결과로부터 제안한 3D 모델 해싱이 기존 해싱에 비하여 강인성 모델 공간성 및 유일성이 우수함을 확인하였다.