Intra-/lntermolecular Excimer Emission of Syndiotactic Polystyrene Having Carbazole Substituents

카바졸 치환체를 가지는 신디오탁틱 폴리스티렌의 분자내/분자간 엑시머 발광

  • Jeong, Seon-Ju (Department of Polymer Science, Kyungpook National University) ;
  • Jung, In-Tae (Department of Polymer Science, Kyungpook National University) ;
  • Yoon, Keun-Byoung (Department of Polymer Science, Kyungpook National University)
  • 정선주 (경북대학교 고분자공학과) ;
  • 정인태 (경북대학교 고분자공학과) ;
  • 윤근병 (경북대학교 고분자공학과)
  • Received : 2011.01.21
  • Accepted : 2011.03.30
  • Published : 2011.07.25

Abstract

The syndiotactic and atactic poly (2-N-carbazoylrnethyl) styrenes were obtained by a half-titanocene catalyst and a radical initiator for the investigation of photophysical properties, especially excimer formation. The atactic polymer exhibited only monomer emission, but the syndiotactic polymer showed both excimer emission and monomer emission resulting from the partial overlapping arrangement of carbazole pendants, The emission band of syndiotactic polymer was considerably dependent on solution concentration and temperature, however atactic polymer was independent because the excimer formation of syndiotactic helical conformation was more favorable than that of the random coil conformation of atactic polymer.

(2-N-carbazoylmethyl) styrene을 티타노센 촉매와 라디칼 개시제를 사용하여 신디오탁틱 및 아탁틱 poly(2-N-carbazoylmethyl) styrene을 합성하고 발광특성 중 엑시머 형성에 대하여 조시하였다. 어탁틱 고분자는 하나의 발광만을 나타낸 반면에 신디오닥틱 고분자는 카바졸기가 부분적으로 오버랩되는 정렬에서 기인하는 단량체 발광과 엑시머 발광을 모두 나타내었다. 아탁틱 고분자의 발광은 용액농도와 온도 의존성이 나타나지 않았으나, 신디오탁틱 고분자는 의존성의 크게 관찰되었다. 이러한 결과로 엑시머 발광은 치환기인 카바졸의 위치에 의존하는 것을 확인하였다.

Keywords

References

  1. H.-J. Knölker and J. Knoll, Chem. Commun., 1170 (2003).
  2. Y. Zhang, Y. Cui, and P. N. Prasad, Phys. Rev., B46, 9900 (1992).
  3. J. C. Scott, L. T. Pautmeier, and W. E. Moerner, J. Opt. Soc. Am., B9, 2059 (1992).
  4. K. R. J. Tomas, J. T. Lin, Y.-T. Tao, and C.-H. Chuen, Chem. Mater., 14, 3852 (2002). https://doi.org/10.1021/cm0202512
  5. J. Ostraskaite, V. Voska, J. Antulis, V. Gaidelis, V. Jankauskas, and J. V. Grazulevicius, J. Mater. Chem., 12, 3469 (2002). https://doi.org/10.1039/b209732j
  6. D. B. Romero, F. Nueesch, T. Benazzi, D. Ades, A. Siove, and L. Zuppiroli, Adv. Mater., 9, 1158 (1997). https://doi.org/10.1002/adma.19970091506
  7. J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, and Pielichowski, Prog. Polym. Sci., 28, 1297 (2003). https://doi.org/10.1016/S0079-6700(03)00036-4
  8. Y. Chen, Y. He, F. Wang, H. Chen, and Q. Gong, Polymer, 42, 1101 (2001). https://doi.org/10.1016/S0032-3861(00)00467-5
  9. T. Uryu, H. Ohkawa, and R. Oshima, Macromolecules, 20, 712 (1987). https://doi.org/10.1021/ma00170a002
  10. H. Sakai, A. Itaya, H. Masuhara, K. Sasaki, and S. Kawata, Polymer, 37, 31 (1996). https://doi.org/10.1016/0032-3861(96)81597-7
  11. P. de Sainte Clarie, J. Phys. Chem. B, 110, 7334 (2006).
  12. A. Itaya, K. Okamoto, and S. Kusabayashi, Bull. Chem. Soc. Jpn., 49, 2082 (1976). https://doi.org/10.1246/bcsj.49.2082
  13. F. Evers, K. Kobs, R. Memming, and D. R. Terrell, J. Am. Chem. Soc., 105, 5988 (1983). https://doi.org/10.1021/ja00357a005
  14. H. Shimazu, Y. Kakinoya, K. Takehira, T. Yoshihara, S. Tobita, Y. Nakamura, and J. Nishimura, Bull. Chem. Soc. Jpn., 82, 860 (2009). https://doi.org/10.1246/bcsj.82.860
  15. Y. Itoh, M. Nakada, H. Sotoh, A. Hachimori, and S. E. Webber, Macromolecules, 26, 1941 (1993). https://doi.org/10.1021/ma00060a022
  16. W. Klopffer, Chem. Phys. Lett., 4, 193 (1969). https://doi.org/10.1016/0009-2614(69)80097-7
  17. W. Klopffer, J. Chem. Phys., 50, 2337 (1969). https://doi.org/10.1063/1.1671385
  18. K.-M. Yeh , C.-C. Lee, and C. Yun, J. Polym. Sci. Polym. Chem. Ed., 46, 5180 (2008). https://doi.org/10.1002/pola.22846
  19. N. Ishihara, T. Seimiya, M. Kuramoto, and M. Uoi, Macromolecules, 19, 2464 (1986). https://doi.org/10.1021/ma00163a027
  20. M. Leibowitz and A. Weinreb, J. Chem. Phys., 46, 4652 (1967). https://doi.org/10.1063/1.1840616
  21. R. B. Fox, T. R. Price, R. F. Cozzens, and J. R. McDonald, J. Chem. Phys., 57, 534 (1972). https://doi.org/10.1063/1.1677997
  22. C. E. Hoyle, T. L. Nemzek, A. Mar, and J. E. Guillet, Macromolecules, 11, 429 (1978). https://doi.org/10.1021/ma60062a029
  23. S. S. Yanari, F. A. Bovey, and R. Lumry, Nature, 200, 242 (1963). https://doi.org/10.1038/200242a0
  24. C. W. Frank and L. A. Harrah, J. Chem. Phys., 61, 1526 (1974). https://doi.org/10.1063/1.1682097
  25. J. W. Longworth and F. A. Bovey, Biopolymers, 4, 1115 (1966). https://doi.org/10.1002/bip.1966.360041008
  26. J. W. Longworth, Biopolymers, 4, 1131 (1966). https://doi.org/10.1002/bip.1966.360041009
  27. G. Guerra, V. M. Vitalino, C. De Rosa, V. Petraccone, and P. Corradini, Mcromolecules, 23, 1539 (1990). https://doi.org/10.1021/ma00207a050
  28. A. R. Albunia, P. Musto, and G. Guerra, Polymer, 47, 234 (2006). https://doi.org/10.1016/j.polymer.2005.10.135