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Abstract

본 연구에서는 원형 박판 구조물의 안정성에 대하여 해석 하였다. 임계하중은 하중을 점차적으로 증가하여 구조

물이 파괴가 발생하여 안정성을 상실 하는 상태에서 가장 작은 하중을 의미한다. 판구조의 안정성을 임계하중의 크

기로 기초를 두고 해석 하였다. 원형 박판구조의 차분해석은 일반 판구조와 같으므로 최근에 많은 연구의 대상이

되어왔다. 차분법은 복잡한 구조물에서도 물론, 다양한 경계조건을 포함하는 문제에 이르기까지 효과적인 수치방법

이다. 본 연구에서는 기본 박판구조의 지배방정식을 유도하고 차분화 하여 직접적으로 접근하였다. 원 둘레 의 지

점이 힌지 받침으로, 등분포 하중을 받고 있는 박판을 기하학적 비선형 해석으로 수행하여 원형 박판의 처짐 및 응

력을 해석 하였다.
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1. Introduction

Plates are rigid planar structures, typically made of

monolithic material, whose depths are small with

respect to their other dimensions. A multidirectional

dispersal of applied loads characterizes the way loads

are carried to supports in plate structures. The

advent of modern reinforced concrete has made the

plate among the most common of all building

element. Included among the more familiar examples

of plates are roofs and windows of buildings, table

tops, manhole covers and side panels. For instance,

glass plates are widely used in modern buildings.

With larger and larger sizes of glass plates being

used in high-rise buildings, it is becoming important

to be able to predict accurately the response of glass

plates under lateral loads representing wind pressure.

Plates may be classified into two groups: thin

plates with large deflections and thick plates. We

shall consider only large deflections of thin plates, a

simplification consistent with the magnitude of

deformation commonly found in plate structures. A

analysis of thin plates subjected to lateral loads are

most commonly accomplished by using a linear

theory in which one assumes that the lateral

displacements or deflections due to the loads are

small. However, this linear analysis will not be valid

if deflection of the plate is large. As the deflections

of the plate become large, the deformations in the

middle surface of the plate increase in such a

manner that errors in solutions using linear theory

grow simultaneously. These errors become so large that
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linear solutions containing displacements and stresses

totally disagree with experimental data. Thus, the

nonlinear plate for theory developed by von Karman

is used for the analysis of thin plates[5,7]. The

nonlinear differential equations of the plate were first

derived by von Karman in 1910 following initial

work on large deflections by Kirchhoff. He coupled

the effects of in-plane force with out-of-plane

deflections. Closed form solutions for this theory,

even for simple rectangular plates, are known. In

1936, Kaiser solved a uniformly laterally loaded,

simply supported, square plate problem[1]. He solved

the problem by using the finite difference method

and supported solutions with experimental results

using a thin square plate. A large number of

research works has been reported in the area of

finite difference of plate flexure problems such as

large displacement analysis, plate vibrations, stress

concentration problems etc[2,3,4,6]. The primary

objective of this study is to develop a mathematical

model which can analyze thin, circular plates which

is subjected to lateral pressure. Complete finite

difference representation of the circular plate is involved.

Based on the von Karman theory of plates and

using the finite difference method, we developed a

computer program which determines the deflections

and stresses in simply supported circular thin plates.

2. Nonlinear Differential Equations of

Circular Plate

The governing differential equations of a thin plate

under lateral load  per unit area in Cartesian

coordinates is as follows:

    (1)

  

 (2)

where the differential operator   and  , applied to

w and , are defined as

 

 



 



 



 


 



 


 


 

 

w(x,y) is the transverse deflection of the plate,  is

the membrane stress function, q(x,y) is the intensity

of the downward distributed load, and  is the

stiffness of the plate related to the modulus of

elasticity  , the thickness of the plate  , and the

Poisson's ratio  as      . Polar

coordinates sometimes simplify problems with curved

or circular boundaries. As the plate is circular, it is

most suitable to use polar coordinates to express the

governing equation and the finite differences. A

point(x,y) in Cartesian coordinates is represented by

the polar coordinates(,), where the transformation

is given by
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Consider a function ( ,) in which  and  are

functions of  and  . The partial derivatives of 

(,) with respect to  and  are transformed to

those in respect to  and  by
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Additional derivatives can be obtained by further

differentiation of these basic expressions. The

differential operator   and  , applied to w and ,

are defined as

  

(

 

 



 






 

)

(

 

 



 






 

) (3)



 

( 










 
) ( 












 
)

 

 













 (4)

When the plate is subjected to forces symmetrical

to the origin, the deflection and membrane stress will

be independent of  , and Equation(1) and(2) become
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From this expression  can be obtained by

substituting  for . The moments  ,  and

 then have the same values as the moments

 ,  , and  at the same point, and by

substituting  0. When the plate is subjected to

forces symmetrical to the origin, the deflection will

be independent of  and  and  are vanished.

The radial moment  , the tangential moment  ,

the radial shear force  per unit circumference

become
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The notations and their positive directions are

shown in Figure 1.

3. Finite Difference Discretization Equation

Many structural problems, such as bending of

plates, involve partial differential equations. When

these equations are associated with complicated

loading or boundary conditions their exact solution

presents a formidable problems. One powerful tool in

solving these equations is the method of finite

differences. The method of finite differences replaces

the plate differential equation and the expressions

defining the boundary conditions with equivalent

difference equation of a set of algebraic equations,

written for every nodal point within the plate.

Solutions of the governing differential equations as

shown in Equation(3) and (4) by the finite difference

method also need proper finite difference approximations

for the boundary conditions. Since the central finite

difference equations are used, some fictitious points

outside the domain of the plate are required. If the

pivotal point is located one point on the boundary,

we must introduce four more fictitious point outside

domain of the plate. Deflections of these fictitious

points can be expressed in terms of deflections of

the nearby points located on the plate using the

boundary conditions. By using the generalized finite
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difference model, the finite difference expressions for

the finite difference expressions for the governing

equations, radial moment, tangential moment and

transverse shear force are represented for a general

point  within the domain can be presented as

follows:
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<Figure 1> Discretized circular plate and free body diagram

where subscripts i designates the location of

pivotal points, as shown in Figure 1. Together with

the appropriate boundary conditions, a set of

simultaneous equations will be obtained to solve the

deflections at the grid points.

4. Solution of the Nonlinear Equations

By performing a static condensation for a domain

with i points with simple mathematical manipulations,

we may get with the Equation(3) and (4) as a set of

linear algebraic equations which can be represented

in matrix form as

[K]{}{q}{()} (5)

[M]{}{()} (6)

where [K] and [M] are biharmonic operators and

matrices, and are symmetric and positive definite. w

denotes the vector representing displacements. q is

the vector representing lateral load.  is the Airy’s

stress function vector. and  are the nonlinear

functions representing part of right side of von

Karman’s equations. Since the above equations are

solution.() and () are the vectors

corresponding to the nonlinear terms in the equations.

The coefficient matrices [K] and [M] are coded as

half banded matrices for computational efficiency. An

initial value of is assumed in the equation and the

deflections  are calculated. The first equation after

( )th iteration becomes

[A]{  }{Q}{(
 ,)} (7)

Using this equation    can be determined.

Knowing value of    and substituting in the

right hand side of the second equation such as that

Equation(6) we obtain

[B]{  }{(
  )} (8)

And from this equation    can be obtained.

This iterative procedure is repeated until satisfactory
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convergence is achieved in the maximum values of

deflection and Airy’s functions in the plate. The

iterative method developed by Vallabhan using a

under-relaxation parameter  to interpolate values

between nth and ( )th iteration[8]. This method

assures fast convergence. The values obtained in

between nth and ( )th iterations are as follows.

  ( )  

   

(  )

where




 for ≥

 for ≺

 

  

For the solution technique the procedures during a

typical load increment can be summarized. First,

assume initial values of  and . Let  and 

be the value for the -th iteration. Use  and 

to determine the values of the vector  
 ,) in

Equation(5). Solve for   and use    to obtain

the value of vector   in Equation(6). Solve for

   . Check the convergence and repeat for  and

 and continue through steps, if the results are not

satisfied. The cycling is terminated when the nodal

displacement reach sufficiently small values. If this

is not achieved in a predetermined number of

iterations, collapse conditions are deemed and the

process is stopped.

5. Numerical Implementation

To investigate the validity of the proposed

procedure, a distinct problem pertaining to circular

plate is considered. As an example, a monolithic

plate of size of radius  8 is considered. The

whole plate circumference edge is simply supported.

The plate is subjected in a state of uniformly

distributed load with increasing of 0.5 . In this

case Poisson's ratio  and elastic modulus  are

taken to be 0.15 and 20GPa. The plate has 8

divisions in the direction of radius.

The displacement distributions at various loads

(  )are shown in Figure 2. This

demonstrates the nonlinearity of the displacement

patterns and the migration of the maximum

displacement from the support towards the center of

plate. Figure 3 shows the maximum principal tensile

distributions at various loads. For increasing lateral

pressures, the maximum principal tensile stress

occurs at the center of the plate and migrates

toward the corners as the load increases. It was

deemed important to describe the locations of the

maximum principal tensile stress as it occurs.

<Figure 2> Radial variation of deflection at various

loads in the direction of radius

<Figure 3> Maximum principal tensile stress

distribution in the direction of radius
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6. Conclusions

A mathematical model for the nonlinear stress

analysis of thin circular plates is developed. For the

geometrically nonlinear, large deflection behavior of

the circular plate, the classical von Karman equations

are used. These equations are solved numerically by

using the finite difference method. This method

essentially consists of large sets of algebraic equations

in terms of discrete values of the functions at

discrete points. An Gauss elimination scheme has been

employed to solve these linear algebraic equations.

The theoretical study of circular nonlinear plate

provide interesting insights into the relative behaviors

of these plates under lateral pressures. Since the

elastic deflections are large compared to the plate

thickness during loading, both bending and membrane

stresses are developed and as such a nonlinear

stress analysis is necessary, accounting for the effects

of large deflection. The displacement behavior was

described in terms of the membrane displacements.

Furthermore, The critical load in this case is that

uniformly distributed live load will be in the range

of 50 to 60 for the stability of this

circular plate. This iterative scheme appears to be

suitable for general nonlinear behavior because it

relies on the fact that a unique deflection exists for

an increment of load. Using the results from this

analysis design curves can be developed for the

design of laminated plate since laminated plate

represents the layered.
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